3,206 research outputs found

    Belief in public efficacy, trust and attitudes to modern genetic science

    Get PDF
    The official published version can be accessed from the links below - Copyright @ 2007 Wiley-BlackwellGovernment and policymakers want to engage the public in a dialogue about the conduct and consequences of science and increasingly seek to actively involve citizens in decision-making processes. Implicit in this thinking is that greater transparency and public inclusion will help dispel fears associated with new scientific advancements, foster greater public trust in those accountable, and ultimately increase the acceptability of new technologies. Less understood, however, are public perceptions about such high-level involvement in science and how these map onto public trust and attitudes within a diverse population. This article uses the concept of public efficacy—the extent to which people believe that the public might be able to affect the course of decision making—to explore differences in trust, attentiveness, and attitudes toward modern genetic science. Using nationally representative data from the 2003 British Social Attitudes Survey, we begin by examining the characteristics of those who have a positive belief about public involvement in this area of scientific inquiry. We then focus on how this belief maps on to indicators of public trust in key stakeholder groups, including the government and genetic scientists. Finally, we consider the relationship between public efficacy and trust and attitudes toward different applications of genetic technology. Our findings run contrary to assumptions that public involvement in science will foster greater trust and lead to a climate of greater acceptance for genetic technology. A belief in public efficacy does not uniformly equate with more trusting attitudes toward stakeholders but is associated with less trust in government rules. Whereas trust is positively correlated with more permissive attitudes about technologies such as cloning and gene therapy, people who believe in high-level public involvement are less likely to think that these technologies should be allowed than those who do not.The support of the Economics and Social Research Council (ESRC) is acknowledged. The work arises from the ESRC Attitudes to Genomics project L145251005

    A joint time-invariant filtering approach to the linear Gaussian relay problem

    Full text link
    In this paper, the linear Gaussian relay problem is considered. Under the linear time-invariant (LTI) model the problem is formulated in the frequency domain based on the Toeplitz distribution theorem. Under the further assumption of realizable input spectra, the LTI Gaussian relay problem is converted to a joint design problem of source and relay filters under two power constraints, one at the source and the other at the relay, and a practical solution to this problem is proposed based on the projected subgradient method. Numerical results show that the proposed method yields a noticeable gain over the instantaneous amplify-and-forward (AF) scheme in inter-symbol interference (ISI) channels. Also, the optimality of the AF scheme within the class of one-tap relay filters is established in flat-fading channels.Comment: 30 pages, 10 figure

    Optimal Pricing Effect on Equilibrium Behaviors of Delay-Sensitive Users in Cognitive Radio Networks

    Full text link
    This paper studies price-based spectrum access control in cognitive radio networks, which characterizes network operators' service provisions to delay-sensitive secondary users (SUs) via pricing strategies. Based on the two paradigms of shared-use and exclusive-use dynamic spectrum access (DSA), we examine three network scenarios corresponding to three types of secondary markets. In the first monopoly market with one operator using opportunistic shared-use DSA, we study the operator's pricing effect on the equilibrium behaviors of self-optimizing SUs in a queueing system. %This queue represents the congestion of the multiple SUs sharing the operator's single \ON-\OFF channel that models the primary users (PUs) traffic. We provide a queueing delay analysis with the general distributions of the SU service time and PU traffic using the renewal theory. In terms of SUs, we show that there exists a unique Nash equilibrium in a non-cooperative game where SUs are players employing individual optimal strategies. We also provide a sufficient condition and iterative algorithms for equilibrium convergence. In terms of operators, two pricing mechanisms are proposed with different goals: revenue maximization and social welfare maximization. In the second monopoly market, an operator exploiting exclusive-use DSA has many channels that will be allocated separately to each entering SU. We also analyze the pricing effect on the equilibrium behaviors of the SUs and the revenue-optimal and socially-optimal pricing strategies of the operator in this market. In the third duopoly market, we study a price competition between two operators employing shared-use and exclusive-use DSA, respectively, as a two-stage Stackelberg game. Using a backward induction method, we show that there exists a unique equilibrium for this game and investigate the equilibrium convergence.Comment: 30 pages, one column, double spac

    Nested Lattice Codes for Gaussian Relay Networks with Interference

    Full text link
    In this paper, a class of relay networks is considered. We assume that, at a node, outgoing channels to its neighbors are orthogonal, while incoming signals from neighbors can interfere with each other. We are interested in the multicast capacity of these networks. As a subclass, we first focus on Gaussian relay networks with interference and find an achievable rate using a lattice coding scheme. It is shown that there is a constant gap between our achievable rate and the information theoretic cut-set bound. This is similar to the recent result by Avestimehr, Diggavi, and Tse, who showed such an approximate characterization of the capacity of general Gaussian relay networks. However, our achievability uses a structured code instead of a random one. Using the same idea used in the Gaussian case, we also consider linear finite-field symmetric networks with interference and characterize the capacity using a linear coding scheme.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Optimization flow control -- I: Basic algorithm and convergence

    Get PDF
    We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property

    Low-Complexity Approaches to Slepian–Wolf Near-Lossless Distributed Data Compression

    Get PDF
    This paper discusses the Slepian–Wolf problem of distributed near-lossless compression of correlated sources. We introduce practical new tools for communicating at all rates in the achievable region. The technique employs a simple “source-splitting” strategy that does not require common sources of randomness at the encoders and decoders. This approach allows for pipelined encoding and decoding so that the system operates with the complexity of a single user encoder and decoder. Moreover, when this splitting approach is used in conjunction with iterative decoding methods, it produces a significant simplification of the decoding process. We demonstrate this approach for synthetically generated data. Finally, we consider the Slepian–Wolf problem when linear codes are used as syndrome-formers and consider a linear programming relaxation to maximum-likelihood (ML) sequence decoding. We note that the fractional vertices of the relaxed polytope compete with the optimal solution in a manner analogous to that observed when the “min-sum” iterative decoding algorithm is applied. This relaxation exhibits the ML-certificate property: if an integral solution is found, it is the ML solution. For symmetric binary joint distributions, we show that selecting easily constructable “expander”-style low-density parity check codes (LDPCs) as syndrome-formers admits a positive error exponent and therefore provably good performance

    Full-Service MAC Protocol for Metro-Reach GPONs

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”An advanced medium access control protocol is presented demonstrating dynamic bandwidth allocation for long-reach gigabit-capable passive optical networks (GPONs). The protocol enables the optical line terminal to overlap the idle time slots in each packet transmission cycle with a virtual polling cycle to increase the effective transmission bandwidth. Contrasting the new scheme with developed algorithms, network modeling has exhibited significant improvement in channel throughput, mean packet delay, and packet loss rate in the presence of class-of-service and service-level differentiation. In particular, the displayed 34% increase in the overall channel throughput and 30 times reduction in mean packet delay for service-level 1 and service-level 2 optical network units (ONUs) at accustomed 50% ONU load constitutes the highest extended-reach GPON performance reported up to date.Peer reviewe

    Optimal Partitioned Cyclic Difference Packings for Frequency Hopping and Code Synchronization

    Full text link
    Optimal partitioned cyclic difference packings (PCDPs) are shown to give rise to optimal frequency-hopping sequences and optimal comma-free codes. New constructions for PCDPs, based on almost difference sets and cyclic difference matrices, are given. These produce new infinite families of optimal PCDPs (and hence optimal frequency-hopping sequences and optimal comma-free codes). The existence problem for optimal PCDPs in Z3m{\mathbb Z}_{3m}, with mm base blocks of size three, is also solved for all m≢8,16(mod24)m\not\equiv 8,16\pmod{24}.Comment: to appear in IEEE Transactions on Information Theor
    corecore