59 research outputs found

    Murine model of elastase-induced proximal thoracic aortic aneurysm through a midline incision in the anterior neck

    Get PDF
    ObjectiveThis study was performed to develop a murine model of elastase-induced proximal thoracic aortic aneurysms (PTAAs).MethodsThe ascending thoracic aorta and aortic arch of adult C57BL/6J male mice were exposed through a midline incision in the anterior neck, followed by peri-adventitial elastase or saline application. The maximal ascending thoracic aorta diameter was measured with high-resolution micro-ultrasound. Twenty-eight days after the operation, the aortas were harvested and analyzed by histopathological examination and qualitative polymerase chain reaction to determine the basic characteristics of the aneurysmal lesions.ResultsFourteen days after the operation, the dilation rate (mean ± standard error) in the 10-min elastase application group (n = 10, 71.44 ± 10.45%) or 5-min application group (n = 9, 42.67 ± 3.72%) were significantly higher than that in the saline application group (n = 9, 7.37 ± 0.94%, P < 0.001 for both). Histopathological examination revealed aortic wall thickening, degradation of elastin fibers, loss of smooth muscle cells, more vasa vasorum, enhanced extracellular matrix degradation, augmented collagen synthesis, upregulated apoptosis and proliferation capacity of smooth muscle cells, and increased macrophages and CD4+ T cells infiltration in the PTAA lesions. Qualitative analyses indicated higher expression of the proinflammatory markers, matrix metalloproteinase-2 and -9 as well as Collagen III, Collagen I in the PTAAs than in the controls.ConclusionWe established a novel in vivo mouse model of PTAAs through a midline incision in the anterior neck by peri-adventitial application of elastase. This model may facilitate research into the pathogenesis of PTAA formation and the treatment strategy for this devastating disease

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Dual-Channel Global Closed-Loop Supply Chain Network Optimization Based on Random Demand and Recovery Rate

    No full text
    In the process of globalization, customer demand is usually difficult to predict, and product recycling is generally difficult to achieve accurately. It is also urgent to deal with increased inventory while avoiding shortages, with the purpose of reducing supply chain risks. This study analyzes the integrated supply chain decision-making problem in the random product demand and return environment. It proposes a multi-objective optimization model, which is an effective tool to solve the design and planning problems of the global closed-loop supply chain. It consists of a multi-period, single-product and multi-objective mixed integer linear programming model, which can solve some strategic decision problems, including the network structure, entity capacities, flow of products and components, and collection levels, as well as the inventory levels. From the perspective of economic, environmental and social benefits, three objective functions are defined, including maximizing the net present value (NPV) of the system, minimizing the total CO2e emissions of supply chain activities, and maximizing social sustainability indicators. Finally, a numerical example is provided to verify the advantages of this model, and sensitivity analysis results are provided. The results show that changes in product demand and return rate will have a great impact on economic and social performance

    A Review of Brain Activity and EEG-Based Brain–Computer Interfaces for Rehabilitation Application

    No full text
    Patients with severe CNS injuries struggle primarily with their sensorimotor function and communication with the outside world. There is an urgent need for advanced neural rehabilitation and intelligent interaction technology to provide help for patients with nerve injuries. Recent studies have established the brain-computer interface (BCI) in order to provide patients with appropriate interaction methods or more intelligent rehabilitation training. This paper reviews the most recent research on brain-computer-interface-based non-invasive rehabilitation systems. Various endogenous and exogenous methods, advantages, limitations, and challenges are discussed and proposed. In addition, the paper discusses the communication between the various brain-computer interface modes used between severely paralyzed and locked patients and the surrounding environment, particularly the brain-computer interaction system utilizing exogenous (induced) EEG signals (such as P300 and SSVEP). This discussion reveals with an examination of the interface for collecting EEG signals, EEG components, and signal postprocessing. Furthermore, the paper describes the development of natural interaction strategies, with a focus on signal acquisition, data processing, pattern recognition algorithms, and control techniques

    Study on Flexible sEMG Acquisition System and Its Application in Muscle Strength Evaluation and Hand Rehabilitation

    No full text
    Wearable devices based on surface electromyography (sEMG) to detect muscle activity can be used to assess muscle strength with the development of hand rehabilitation applications. However, conventional acquisition devices are usually complicated to operate and poorly comfortable for more medical and scientific application scenarios. Here, we report a flexible sEMG acquisition system that combines a graphene-based flexible electrode with a signal acquisition flexible printed circuit (FPC) board. Our system utilizes a polydimethylsiloxane (PDMS) substrate combined with graphene transfer technology to develop a flexible sEMG sensor. The single-lead sEMG acquisition system was designed and the FPC board was fabricated considering the requirements of flexible bending and twisting. We demonstrate the above design approach and extend this flexible sEMG acquisition system to applications for assessing muscle strength and hand rehabilitation training using a long- and short-term memory network training model trained to predict muscle strength, with 98.81% accuracy in the test set. The device exhibited good flexion and comfort characteristics. In general, the ability to accurately and imperceptibly monitor surface electromyography (EMG) signals is critical for medical professionals and patients

    A Fast Hyperspectral Anomaly Detection Algorithm Based on Greedy Bilateral Smoothing and Extended Multi-Attribute Profile

    No full text
    To address the difficulty of separating background materials from similar materials associated with the use of “single-spectral information” for hyperspectral anomaly detection, a fast hyperspectral anomaly detection algorithm based on what we term the “greedy bilateral smoothing and extended multi-attribute profile” (GBSAED) method is proposed to improve detection precision and operation efficiency. This method utilizes “greedy bilateral smoothing” to decompose the low-rank part of a hyperspectral image (HSI) dataset and calculate spectral anomalies. This process improves the operational efficiency. Then, the extended multi-attribute profile is used to extract spatial anomalies and restrict the shape of anomalies. Finally, the two components are combined to limit false alarms and obtain appropriate detection results. This new method considers both spectral and spatial information with an improved structure that ensures operational efficiency. Using five real HSI datasets, this study demonstrates that the GBSAED method is more robust than eight representative algorithms under diverse application scenarios and greatly improves detection precision and operational efficiency

    Design of Micro-Bluetooth Motion Acquisition System

    No full text
    To realize the digitization of infant motion information and explore more abundant human health information with motion information to facilitate early treatment, a micro-Bluetooth motion acquisition system is designed. The low-power design of the micro-Bluetooth motion capture sensor in the system and intelligent algorithm for optimizing the precision of the infant movement measured angles can realize the system’s sustainable use and data reliability. With the help of collecting and analyzing human arm, leg, and head movement information, we can recognize that the system can carry out more research and experiments on natural infant movements

    Adiponectin protects against myocardial ischemia–reperfusion injury: a systematic review and meta-analysis of preclinical animal studies

    No full text
    Abstract Background Myocardial ischemia–reperfusion injury (MIRI) is widespread in the treatment of ischemic heart disease, and its treatment options are currently limited. Adiponectin (APN) is an adipocytokine with cardioprotective properties; however, the mechanisms of APN in MIRI are unclear. Therefore, based on preclinical (animal model) evidence, the cardioprotective effects of APN and the underlying mechanisms were explored. Methods The literature was searched for the protective effect of APN on MIRI in six databases until 16 November 2023, and data were extracted according to selection criteria. The outcomes were the size of the myocardial necrosis area and hemodynamics. Markers of oxidation, apoptosis, and inflammation were secondary outcome indicators. The quality evaluation was performed using the animal study evaluation scale recommended by the Systematic Review Center for Laboratory animal Experimentation statement. Stata/MP 14.0 software was used for the summary analysis. Results In total, 20 papers with 426 animals were included in this study. The pooled analysis revealed that APN significantly reduced myocardial infarct size [weighted mean difference (WMD) = 16.67 (95% confidence interval (CI) = 13.18 to 20.16, P < 0.001)] and improved hemodynamics compared to the MIRI group [Left ventricular end-diastolic pressure: WMD = 5.96 (95% CI = 4.23 to 7.70, P < 0.001); + dP/dtmax: WMD = 1393.59 (95% CI = 972.57 to 1814.60, P < 0.001); -dP/dtmax: WMD = 850.06 (95% CI = 541.22 to 1158.90, P < 0.001); Left ventricular ejection fraction: WMD = 9.96 (95% CI = 7.29 to 12.63, P < 0.001)]. Apoptosis indicators [caspase-3: standardized mean difference (SMD) = 3.86 (95% CI = 2.97 to 4.76, P < 0.001); TUNEL-positive cells: WMD = 13.10 (95% CI = 8.15 to 18.05, P < 0.001)], inflammatory factor levels [TNF-α: SMD = 4.23 (95% CI = 2.48 to 5.98, P < 0.001)], oxidative stress indicators [Superoxide production: SMD = 4.53 (95% CI = 2.39 to 6.67, P < 0.001)], and lactate dehydrogenase levels [SMD = 2.82 (95% CI = 1.60 to 4.04, P < 0.001)] were significantly reduced. However, the superoxide dismutase content was significantly increased [SMD = 1.91 (95% CI = 1.17 to 2.65, P < 0.001)]. Conclusion APN protects against MIRI via anti-inflammatory, antiapoptotic, and antioxidant effects, and this effect is achieved by activating different signaling pathways

    Design of a Millimeter-Wave Radar Remote Monitoring System for the Elderly Living Alone Using WIFI Communication

    No full text
    In response to the current demand for the remote monitoring of older people living alone, a non-contact human vital signs monitoring system based on millimeter wave radar has gradually become the object of research. This paper mainly carried out research regarding the detection method to obtain human breathing and heartbeat signals using a frequency modulated continuous wave system. We completed a portable millimeter-wave radar module for wireless communication. The radar module was a small size and had a WIFI communication interface, so we only needed to provide a power cord for the radar module. The breathing and heartbeat signals were detected and separated by FIR digital filter and the wavelet transform method. By building a cloud computing framework, we realized remote and senseless monitoring of the vital signs for older people living alone. Experiments were also carried out to compare the performance difference between the system and the common contact detection system. The experimental results showed that the life parameter detection system based on the millimeter wave sensor has strong real-time performance and accuracy
    corecore