1 research outputs found
Analytical Solution of a Stochastic Content Based Network Model
We define and completely solve a content-based directed network whose nodes
consist of random words and an adjacency rule involving perfect or approximate
matches, for an alphabet with an arbitrary number of letters. The analytic
expression for the out-degree distribution shows a crossover from a leading
power law behavior to a log-periodic regime bounded by a different power law
decay. The leading exponents in the two regions have a weak dependence on the
mean word length, and an even weaker dependence on the alphabet size. The
in-degree distribution, on the other hand, is much narrower and does not show
scaling behavior. The results might be of interest for understanding the
emergence of genomic interaction networks, which rely, to a large extent, on
mechanisms based on sequence matching, and exhibit similar global features to
those found here.Comment: 13 pages, 5 figures. Rewrote conclusions regarding the relevance to
gene regulation networks, fixed minor errors and replaced fig. 4. Main body
of paper (model and calculations) remains unchanged. Submitted for
publicatio