360 research outputs found
Light Scattering from Nonequilibrium Concentration Fluctuations in a Polymer solution
We have performed light-scattering measurements in dilute and semidilute
polymer solutions of polystyrene in toluene when subjected to stationary
temperature gradients. Five solutions with concentrations below and one
solution with a concentration above the overlap concentration were
investigated. The experiments confirm the presence of long-range nonequilibrium
concentration fluctuations which are proportional to , where
is the applied temperature gradient and is the wave number of
the fluctuations. In addition, we demonstrate that the strength of the
nonequilibrium concentration fluctuations, observed in the dilute and
semidilute solution regime, agrees with theoretical values calculated from
fluctuating hydrodynamics. Further theoretical and experimental work will be
needed to understand nonequilibrium fluctuations in polymer solutions at higher
concentrations.Comment: revtex, 16 pages, 7 figures. J. Chem. Phys., to appea
Molecular Dynamics Simulation of Heat-Conducting Near-Critical Fluids
Using molecular dynamics simulations, we study supercritical fluids near the
gas-liquid critical point under heat flow in two dimensions. We calculate the
steady-state temperature and density profiles. The resultant thermal
conductivity exhibits critical singularity in agreement with the mode-coupling
theory in two dimensions. We also calculate distributions of the momentum and
heat fluxes at fixed density. They indicate that liquid-like (entropy-poor)
clusters move toward the warmer boundary and gas-like (entropy-rich) regions
move toward the cooler boundary in a temperature gradient. This counterflow
results in critical enhancement of the thermal conductivity
Histogram Reweighting Method for Dynamic Properties
The histogram reweighting technique, widely used to analyze Monte Carlo data,
is shown to be applicable to dynamic properties obtained from Molecular
Dynamics simulations. The theory presented here is based on the fact that the
correlation functions in systems in thermodynamic equilibrium are averages over
initial conditions of functions of the trajectory of the system in phase-space,
the latter depending on the volume, the total number of particles and the
classical Hamiltonian. Thus, the well-known histogram reweighting method can
almost straightforwardly be applied to reconstruct the probability distribution
of initial states at different thermodynamic conditions, without extra
computational effort. Correlation functions and transport coefficients are
obtained with this method from few simulation data sets.Comment: 4 pages, 3 figure
Increased power gains from wake steering control using preview wind direction information
Yaw controllers typically rely on measurements taken at the wind turbine, resulting in a slow reaction to wind direction changes and subsequent power losses due to misalignments. Delayed yaw action is especially problematic in wake steering operation because it can result in power losses when the yaw misalignment angle deviates from the intended one due to a changing wind direction. This study explores the use of preview wind direction information for wake steering control in a two-turbine setup with a wind speed in the partial load range. For these conditions and a simple yaw controller, results from an engineering model identify an optimum preview time of 90 s. These results are validated by forcing wind direction changes in a large-eddy simulation model. For a set of six simulations with large wind direction changes, the average power gain from wake steering increases from only 0.44 % to 1.32 %. For a second set of six simulations with smaller wind direction changes, the average power gain from wake steering increases from 1.24 % to 1.85 %. Low-frequency fluctuations are shown to have a larger impact on the performance of wake steering and the effectiveness of preview control, in particular, than high-frequency fluctuations. From these results, it is concluded that the benefit of preview wind direction control for wake steering is substantial, making it a topic worth pursuing in future work.</p
Designing novel applications for emerging multimedia technology
Current R&D in media technologies such as Multimedia, Semantic Web and Sensor Web technologies are advancing in a fierce rate and will sure to become part of our important regular items in a 'conventional' technology inventory in near future. While the R&D nature of these technologies means their accuracy, reliability and robustness are not sufficient enough to be used in real world yet, we want to envision now the near-future where these technologies will have matured and used in real applications in order to explore and start shaping many possible new ways these novel technologies could be utilised.
In this talk, some of this effort in designing novel applications that incorporate various media technologies as their backend will be presented. Examples include novel scenarios of LifeLogging application that incorporate automatic structuring of millions of photos passively captured from a SenseCam (wearable digital camera that automatically takes photos triggered by environmental sensors) and an interactive TV application incorporating a number of multimedia tools yet extremely simple and easy to use with a remote control in a lean-back position. The talk will conclude with remarks on how the design of novel applications that have no precedence or existing user base should require somewhat different approach from those suggested and practiced in conventional usability engineering methodology
Critical Point Field Mixing in an Asymmetric Lattice Gas Model
The field mixing that manifests broken particle-hole symmetry is studied for
a 2-D asymmetric lattice gas model having tunable field mixing properties.
Monte Carlo simulations within the grand canonical ensemble are used to obtain
the critical density distribution for different degrees of particle-hole
asymmetry. Except in the special case when this asymmetry vanishes, the density
distributions exhibit an antisymmetric correction to the limiting
scale-invariant form. The presence of this correction reflects the mixing of
the critical energy density into the ordering operator. Its functional form is
found to be in excellent agreement with that predicted by the mixed-field
finite-size-scaling theory of Bruce and Wilding. A computational procedure for
measuring the significant field mixing parameter is also described, and its
accuracy gauged by comparing the results with exact values obtained
analytically.Comment: 10 Pages, LaTeX + 8 figures available from author on request, To
appear in Z. Phys.
Competition of Mesoscales and Crossover to Tricriticality in Polymer Solutions
We show that the approach to asymptotic fluctuation-induced critical behavior
in polymer solutions is governed by a competition between a correlation length
diverging at the critical point and an additional mesoscopic length-scale, the
radius of gyration. Accurate light-scattering experiments on polystyrene
solutions in cyclohexane with polymer molecular weights ranging from 200,000 up
to 11.4 million clearly demonstrate a crossover between two universal regimes:
a regime with Ising asymptotic critical behavior, where the correlation length
prevails, and a regime with tricritical theta-point behavior determined by a
mesoscopic polymer-chain length.Comment: 4 pages in RevTeX with 4 figure
Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas
We explore the phase transitions of the ideal relativistic neutral Bose gas
confined in a cubic box, without assuming the thermodynamic limit nor
continuous approximation. While the corresponding non-relativistic canonical
partition function is essentially a one-variable function depending on a
particular combination of temperature and volume, the relativistic canonical
partition function is genuinely a two-variable function of them. Based on an
exact expression of the canonical partition function, we performed numerical
computations for up to hundred thousand particles. We report that if the number
of particles is equal to or greater than a critical value, which amounts to
7616, the ideal relativistic neutral Bose gas features a spinodal curve with a
critical point. This enables us to depict the phase diagram of the ideal Bose
gas. The consequent phase transition is first-order below the critical pressure
or second-order at the critical pressure. The exponents corresponding to the
singularities are 1/2 and 2/3 respectively. We also verify the recently
observed `Widom line' in the supercritical region.Comment: 1+25 pages, 6 B/W figures: Comment on the Widom line added. Minor
improvement. Version to appear in `New Journal of Physics
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
- …