45 research outputs found

    Catabolite repression of the citST two-component system in Bacillus subtilis

    Get PDF
    In Bacillus subtilis, expression of the citrate transporter CitM is under strict control. Transcription of the citM gene is induced by citrate in the medium mediated by the CitS-CitT two-component system and repressed by rapidly degraded carbon sources mediated by carbon catabolite repression (CCR). In this study, we demonstrate that citST genes are part of a bicistronic operon. The promoter region was localized in a stretch of 58 base pairs upstream of the citS gene by deletion experiments. Transcription of the operon was repressed in the presence of glucose by the general transcription factor CcpA. A distal consensus cre site in the citS-coding sequence was implicated in the mechanism of repression. Furthermore, this repression was relieved in Bacillus subtilis mutants deficient in CcpA or Hpr/Crh, components essential to CCR. Thus, we demonstrate that CCR represses the expression of the citST operon, which is responsible for the induction of citM, through the cre site located 1326 bp from transcriptional start site of citST

    The oral microbiome – an update for oral healthcare professionals

    Get PDF
    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare

    The same but different: Understanding entrepreneurial behaviour in disadvantaged communities

    Get PDF
    While entrepreneurship is widely viewed as being equally accessible in all contexts, it could be questioned if potential or nascent entrepreneurs from minority and disadvantaged communities experience entrepreneurship in a similar manner to the mainstream population. This chapter examines immigrant, people with disability, youth, gay and unemployed communities to explore how their entrepreneurial behaviour might differ from the practices of mainstream entrepreneurs. What emerges is that marginalised communities can frequently find it difficult to divorce business from social living. This can have both positive and negative connotations for an entrepreneur, plus they face additional and distinctive challenges that mainstream entrepreneurs do not experience. The chapter concludes by proposing a novel ‘funnel approach’ that policymakers might adopt when seeking to introduce initiatives targeted at these disadvantaged communities

    Complementary intestinal mucosa and microbiota responses to caloric restriction

    Get PDF
    The intestine is key for nutrient absorption and for interactions between the microbiota and its host. Therefore, the intestinal response to caloric restriction (CR) is thought to be more complex than that of any other organ. Submitting mice to 25% CR during 14 days induced a polarization of duodenum mucosa cell gene expression characterised by upregulation, and downregulation of the metabolic and immune/inflammatory pathways, respectively. The HNF, PPAR, STAT, and IRF families of transcription factors, particularly the Pparα and Isgf3 genes, were identified as potentially critical players in these processes. The impact of CR on metabolic genes in intestinal mucosa was mimicked by inhibition of the mTOR pathway. Furthermore, multiple duodenum and faecal metabolites were altered in CR mice. These changes were dependent on microbiota and their magnitude corresponded to microbial density. Further experiments using mice with depleted gut bacteria and CR-specific microbiota transfer showed that the gene expression polarization observed in the mucosa of CR mice is independent of the microbiota and its metabolites. The holistic interdisciplinary approach that we applied allowed us to characterize various regulatory aspects of the host and microbiota response to CR

    Gut microbiota - at the intersection of everything?

    Full text link
    Over the past decade, numerous studies have found an association between the gut microbiota composition and many diseases. However, is it reality? Or is the truth hidden in the shadow of several thousand publications a year with inflated expectations in almost any disease

    Biochemical and Genetic Characterization of the Enterococcus faecalis Oxaloacetate Decarboxylase Complex

    Get PDF
    <p>Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.</p>
    corecore