251 research outputs found

    Multiple peak aggregations for the Keller-Segel system

    Full text link
    In this paper we derive matched asymptotic expansions for a solution of the Keller-Segel system in two space dimensions for which the amount of mass aggregation is 8Ï€N8\pi N, where N=1,2,3,...N=1,2,3,... Previously available asymptotics had been computed only for the case in which N=1

    Reaction kinetics of muonium with the halogen gases (F2, Cl2, and Br2)

    Get PDF
    Copyright @ 1989 American Institute of PhysicsBimolecular rate constants for the thermal chemical reactions of muonium (Mu) with the halogen gases—Mu+X2→MuX+X—are reported over the temperature ranges from 500 down to 100, 160, and 200 K for X2=F2,Cl2, and Br2, respectively. The Arrhenius plots for both the chlorine and fluorine reactions show positive activation energies Ea over the whole temperature ranges studied, but which decrease to near zero at low temperature, indicative of the dominant role played by quantum tunneling of the ultralight muonium atom. In the case of Mu+F2, the bimolecular rate constant k(T) is essentially independent of temperature below 150 K, likely the first observation of Wigner threshold tunneling in gas phase (H atom) kinetics. A similar trend is seen in the Mu+Cl2 reaction. The Br2 data exhibit an apparent negative activation energy [Ea=(−0.095±0.020) kcal mol−1], constant over the temperature range of ∼200–400 K, but which decreases at higher temperatures, indicative of a highly attractive potential energy surface. This result is consistent with the energy dependence in the reactive cross section found some years ago in the atomic beam data of Hepburn et al. [J. Chem. Phys. 69, 4311 (1978)]. In comparing the present Mu data with the corresponding H atom kinetic data, it is found that Mu invariably reacts considerably faster than H at all temperatures, but particularly so at low temperatures in the cases of F2 and Cl2. The current transition state calculations of Steckler, Garrett, and Truhlar [Hyperfine Interact. 32, 779 (986)] for Mu+X2 account reasonably well for the rate constants for F2 and Cl2 near room temperature, but their calculated value for Mu+Br2 is much too high. Moreover, these calculations seemingly fail to account for the trend in the Mu+F2 and Mu+Cl2 data toward pronounced quantum tunneling at low temperatures. It is noted that the Mu kinetics provide a crucial test of the accuracy of transition state treatments of tunneling on these early barrier HX2 potential energy surfaces.NSERC (Canada), Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their partial support of this research and the Canada Council

    Evidence for a correlated insulator to antiferromagnetic metal transition in CrN

    Full text link
    We investigate the electronic structure of Chromium Nitride (CrN) across the first-order magneto-structural transition at T_N ~ 286 K. Resonant photoemission spectroscopy shows a gap in the 3d partial density of states at the Fermi level and an On-site Coulomb energy U ~ 4.5 eV, indicating strong electron-electron correlations. Bulk-sensitive high resolution (6 meV) laser photoemission reveals a clear Fermi edge indicating an antiferromagnetic metal below T_N. Hard x-ray Cr 2p core-level spectra show T-dependent changes across T_N which originate from screening due to coherent states as substantiated by cluster model calculations using the experimentally observed U. The electrical resistivity confirms an insulator above T_N (E_g ~ 70 meV) which becomes a disordered metal below T_N. The results indicate CrN transforms from a correlated insulator to an antiferromagnetic metal, coupled to the magneto-structural transition.Comment: Submitted to Physical Review Letters (February 2010) 11 pages, 3 figures in the main text, 1 Supplementary Informatio
    • …
    corecore