15 research outputs found

    TRACKING A TREE-KILLER: IMPROVING DETECTION AND CHARACTERIZING SPECIES DISTRIBUTION OF \u3cem\u3ePHYTOPHTHORA CINNAMOMI\u3c/em\u3e IN APPALACHIAN FORESTS

    Get PDF
    Phytophthora cinnamomi is a soil-borne oomycete pathogen causing root rot in susceptible host species. P. cinnamomi is thought to have originated in Southeast Asia, but has since been introduced to many regions around the world, where it causes dramatic declines in many forest tree species. In the eastern US, the primary susceptible tree species of concern are American chestnut (Castanea dentata), white oak (Quercus alba), and shortleaf pine (Pinus echinata). American chestnut, functionally eliminated in the early 1900s by the rapidly acting chestnut blight (Cryphonectria parasitica), has been the subject of decades-long breeding efforts aimed at improving chestnut resistance to chestnut blight. To improve chestnut restoration success, and restoration of other susceptible species, the distribution patterns of P. cinnamomi on a landscape scale must be better understood. This project was initiated to develop an improved method for detecting P. cinnamomi to permit high-throughput screening of forest soils, and to implement the improved detection approach in characterizing the distribution patterns of P. cinnamomi in developing soils on reclaimed surface mines in eastern Kentucky, as well as mature forest soils within an undisturbed watershed in a reference-quality eastern Kentucky forest. We developed an improved detection method using a molecular DNA-amplification approach (PCR), which demonstrated similar sensitivity to traditional culture-based methods, but required less time and space than traditional methods. We used this detection approach to screen soils from a chronosequence of reclaimed surface mines (reclaimed at different points in time) to evaluate whether reclaimed surface mined sites become favorable for P. cinnamomi colonization over time. Our analysis detected P. cinnamomi at the two older sites (reclaimed in 1997 and 2003), but we did not detect P. cinnamomi at the two newer sites sampled (reclaimed in 2005 and 2007). These results suggest that surface mined sites become favorable for P. cinnamomi colonization over time, and should not be considered permanently “Phytophthora-free.” We also collected ~200 samples from a watershed in UK’s Robinson Forest, from plots representing a gradient of topographic position, slope, and aspect. This survey indicated that P. cinnamomi distribution in forests is complex and can be difficult to predict; however, P. cinnamomi was detected in both drier upslope sites and in moister drainage sites

    Influence of Spoil Type on Afforestation Success and Hydrochemical Function on a Surface Coal Mine in Eastern Kentucky

    Get PDF
    Surface coal mining in Appalachia has contributed to a suite of ecological impacts, both terrestrial and aquatic. Conventional reclamation in Appalachia leads to the development of hay/pasture systems dominated by nonnative grasses and legumes, with soils that are chemically and physically unfavorable to native tree growth. Several studies have shown that more weathered minespoils provide a better growth medium than unweathered spoils in Appalachia. Spoil segregation plots were constructed on Bent Mountain in Pike County, KY, to compare the suitability of three mine spoil types (BROWN weathered sandstone, GRAY unweathered sandstone, and MIXED sandstones and shales). In 2013 (after nine growing seasons) volume of planted trees was 50x higher on BROWN than on GRAY. In addition, natural colonization of unplanted groundcover and tree species was much more extensive on BROWN than GRAY or MIXED. Most water chemical parameters were similar across spoil types; however, water chemistry on all plots appears to have stabilized after nine growing seasons. Finally, rapidly developing forest on BROWN appears to be influencing water budgeting on the site, leading to lower discharge during summer months. These results indicate that BROWN weathered spoils provide a better growth medium than GRAY unweathered spoils for native trees

    Peril and Possibility: Wilderness as a Space of Becoming in Tolkien\u27s The Children of HĂşrin and Whedon\u27s Firefly and Serenity

    Get PDF
    A tension between wilderness as place of peril and as a place of purity has existed throughout the history of Western civilization. While the Puritan minister Cotton Mather described the wilderness as a habitation of “Dragons,” “Droves of Devils,” and “Fiery Flying Serpents,” Henry David Thoreau maintained that in order to draw near to God, one must draw near to nature. A spectrum of perspectives about wilderness exists within the tension between these two opposing ideas. As a refugee from civilization who makes his home in the wilderness on the borders of society, the Wild Man archetype, famously expressed in the monster Grendel and the noble outlaw Robin Hood, inhabits this spectrum. Both Tolkien’s The Children of Húrin and Whedon’s Firefly and Serenity unfold in settings characterized by being on the border. Furthermore, their heroes are noble outlaws, who choose to live outside of the boundaries of civilization. With these settings and heroes, Tolkien and Whedon make similar contributions to the nuances found in Western traditions of wilderness by emphasizing wilderness as a place of becoming, rich with possibility yet fraught with peril

    Wizards and Woods: The Environmental Ethics of Tolkien’s Istari

    Get PDF
    Tolkien’s wizards are some of the most interesting and impactful characters in The Lord of the Rings, sent to Middle-earth to inspire the free peoples to resist Sauron. Principal among the Istari are Gandalf and Saruman, both of whom feature prominently in the events of The Lord of the Rings. A much more minor role, however, is played by Radagast the Brown, who appears only in passing mentions in The Hobbit and serves almost as a messenger in The Lord of the Rings. These three Istari enable an interesting discussion of environmental relationships, with Radagast and Saruman portrayed as failures and Gandalf alone successful. Radagast is said to have forsaken Men and Elves for the birds and beasts and thus fails in his mission. Saruman also fails, but because of his lust for power and consequent subjugation of people and landscapes, especially Isengard, the Shire, and Fangorn. Gandalf alone succeeds, caring both for the landscapes of Middle-earth and for its peoples. In an environmental ethical framework, Saruman aligns in an extreme anthropocentric position, prioritizing his own preferences over the health of others and their ecosystems. Conversely, Radagast seems to align more with the ecocentric side of the spectrum, considering the Free Peoples relatively unimportant and giving himself instead to the birds and the beasts. In contrast to both, Gandalf understands himself as accountable to the Valar for the accomplishment of his mission to stir up the Free Peoples in opposition to Sauron, alongside care of nonhuman organisms and their environment. Tolkien’s framing of Gandalf as the only successful wizard underscores this theocentric approach as his preferred resolution of the tension between humans and the nonhuman—rightly relating all of them to one another in the service of their Creator

    Forest Development over a Twenty-Year Chronosequence of Reforested Urban Sites

    Get PDF
    Urbanization causes a variety of negative ecological impacts, impairing forests, streams, and other ecosystems. While urban forests are the subject of increasing research attention, planted urban forests are less well-understood than remnant forests; however, these systems may be distinct in terms of ecosystem structure and function. The current study investigates a chronosequence of reforested urban sites in Lexington, KY, USA, with a focus on overstory and understory woody plant community characteristics. Monitoring plots were established in each of the 20 sites; tree height, dbh, and species were surveyed for the overstory, and species and height were surveyed for the understory. Canopy height increased non-linearly with time since planting, rapidly increasing in years 6–10, but remaining relatively steady after year 15. While the overstory was dominated by planted native species, the understory was predominately non-native species, some of which are considered invasive. Overall, the nonlinear logistic relationship of canopy height to time since planting may be driven by species-specific effects—with trees such as ash (Fraxinus spp. L.) and black locust (Robinia pseudoacacia L.) important during the early years after planting, but declining over time due to pests and other pressures. Alternatively, this complex relationship of canopy height with time may be driven by uncontrolled factors such as site quality, landscape position, planted species, etc. The significance of invasive species in the understory suggests that the long-term health of these sites will be compromised without intentional ongoing maintenance to ensure continued forest development toward desired native community characteristics

    Establishing Pine Monocultures and Mixed Pine-Hardwood Stands on Reclaimed Surface Mined Land in Eastern Kentucky: Implications for Forest Resilience in a Changing Climate

    Get PDF
    Surface mining and mine reclamation practices have caused significant forest loss and forest fragmentation in Appalachia. Shortleaf pine (Pinus echinata) is threatened by a variety of stresses, including diseases, pests, poor management, altered fire regimes, and climate change, and the species is the subject of a widescale restoration effort. Surface mines may present opportunity for shortleaf pine restoration; however, the survival and growth of shortleaf pine on these harsh sites has not been critically evaluated. This paper presents first-year survival and growth of native shortleaf pine planted on a reclaimed surface mine, compared to non-native loblolly pine (Pinus taeda), which has been highly successful in previous mined land reclamation plantings. Pine monoculture plots are also compared to pine-hardwood polyculture plots to evaluate effects of planting mix on tree growth and survival, as well as soil health. Initial survival of shortleaf pine is low (42%), but height growth is similar to that of loblolly pine. No differences in survival or growth were observed between monoculture and polyculture treatments. Additional surveys in coming years will address longer-term growth and survival patterns of these species, as well as changes to relevant soil health endpoints, such as soil carbon

    Spoil Type Influences Soil Genesis and Forest Development on an Appalachian Surface Coal Mine Ten Years After Placement

    Get PDF
    Surface mining for coal (or other mineral resources) is a major driver of land-use change around the world and especially in the Appalachian region of the United States. Intentional and well-informed reclamation of surface-mined land is critical for the restoration of healthy ecosystems on these disturbed sites. In Appalachia, the pre-mining land cover is predominately mixed hardwood forest, with rich species diversity. In recent years, Appalachian mine reforestation has become an issue of concern, prompting the development of the Forestry Reclamation Approach, a series of mine reforestation recommendations. One of these recommendations is to use the best available soil substitute; however, the characteristics of the “best” soil substitute have been an issue. This study was initiated to compare the suitability of several types of mine spoil common in the Appalachian region: brown sandstone (Brown), gray sandstone (Gray), mixed spoils (Mixed), and shale (Shale). Experimental plots were established in 2007 with each spoil type replicated three times. These plots were planted with a mix of native hardwood species. Ten years after plot construction and planting, tree growth and canopy cover were highest in Brown, followed by Shale, Mixed, and Gray. Soil conditions (particularly pH) in Brown and Shale were more favorable for native tree growth than Mixed or Gray, largely explaining these differences in tree growth and canopy cover. However, soil chemistry did not clearly explain differences in tree growth between Brown and Shale. These differences were more likely related to differences in near-surface soil temperature, which is related to soil color and available shade

    Evaluating the Use of Tree Shelters for Direct Seeding of \u3cem\u3eCastanea\u3c/em\u3e on a Surface Mine in Appalachia

    Get PDF
    American chestnut (Castanea dentata), once a primary constituent of the eastern hardwood forest ecosystem, was nearly extirpated from the forest canopy by the accidental introduction of chestnut blight (Cryphonectria parasitica). An intensive breeding program has sought to breed blight resistance from Chinese chestnut into American chestnuts, while maintaining as much of the desirable American chestnut phenotypes as possible. Previous studies suggest that these blight resistant American chestnuts, termed “restoration chestnuts”, are capable of thriving on reclaimed surface mines. We direct seeded pure Chinese, pure American, and three backcross lines into brown sandstone minesoil on a mine site in Pike County, KY. To investigate the effects of tree sheltering on survival and growth, we installed tree shelters on half the plots, and left the rest of the plots unsheltered. Results indicated that shelters were highly effective at reducing initial mortality. In addition, while pure Chinese chestnut survival was highest, the three backcross lines have also survived well on this site. Our study demonstrates that American, Chinese, and backcrossed chestnuts can survive through five growing seasons on reclaimed surface mines with the use of tree shelters

    \u3cem\u3ePhytophthora cinnamomi\u3c/em\u3e Colonized Reclaimed Surface Mined Sites in Eastern Kentucky: Implications for the Restoration of Susceptible Species

    Get PDF
    Appalachian forests are threatened by a number of factors, especially introduced pests and pathogens. Among these is Phytophthora cinnamomi, a soil-borne oomycete pathogen known to cause root rot in American chestnut, shortleaf pine, and other native tree species. This study was initiated to characterize the incidence of P. cinnamomi on surface mined lands in eastern Kentucky, USA, representing a range of time since reclamation (10, 12, 15, and 20 years since reclamation). Incidence of P. cinnamomi was correlated to soil properties including overall soil development, as indicated by a variety of measured soil physical and chemical parameters, especially the accumulation of soil organic carbon. P. cinnamomi was detected in only two of the four sites studied, aged 15 and 20 years since reclamation. These sites were generally characterized by higher organic matter accumulation than the younger sites in which P. cinnamomi was not detected. These results demonstrate that P. cinnamomi is capable of colonizing reclaimed mine sites in Appalachia; additional research is necessary to determine the impact of P. cinnamomi on susceptible tree species at these sites

    Development of Mine Soils in a Chronosequence of Forestry-Reclaimed Sites in Eastern Kentucky

    Get PDF
    Surface mining for coal has contributed to widespread deforestation and soil loss in coal mining regions around the world, and particularly in Appalachia, USA. Mined land reforestation is of interest in this and other regions where forests are the dominant pre-mining land use. This study evaluated mine soil development on surface-mined sites reforested according to the Forestry Reclamation Approach, representing a chronosequence of time ranging from 0 to 19 years after reclamation. Soils were sampled in depth increments to 50 cm and analyzed for a suite of soil physical and chemical characteristics. Overall, soil fines (silt + clay) tended to increase over time since reclamation (17% silt at year 0 increasing to 35% at year 11; 3.2% clay at year 0 increasing to 5.7% at year 14) while concentrations of metals (e.g., Al, Mg, Mn, Na) demonstrated varied relationships with time since reclamation. Concentrations of organic carbon (OC) tended to increase with time (0.9% OC at year 0 increasing to 2.3% at year 14), and were most enriched in near-surface soils. Some soil characteristics (e.g., Na, OC, Ca) demonstrated patterns of increasing similarity to the forest control, while others were distinct from the forest control throughout the chronosequence (e.g., Al, clay, Mn, gravel). Future surveys of these soils over time will elucidate longer-term patterns in soil development, and better characterize the time scales over which these soils might be expected to approximate forest soil conditions
    corecore