43 research outputs found

    A Facile Synthesis of Novel Self-Assembled Gold Nanorods Designed for Near-Infrared Imaging

    Get PDF
    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging. Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardiovascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2–4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR) (∼130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro

    Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons

    Get PDF
    Detection of sentinel lymph node (SLN) using photoacoustic imaging is an emerging technique for noninvasive axillary staging of breast cancer. Due to the absence of intrinsic contrast inside the lymph nodes, exogenous contrast agents are used for photoacoustic detection. In this work, we have demonstrated near infrared detection of SLN with gold nanobeacons (GNBs) providing the photoacoustic contrast in a rodent model. We found that size dictates the in vivo characteristics of these nanoparticles in SLN imaging. Larger nanobeacons with high payloads of gold were not as efficient as smaller size nanobeacons with lower payloads for this purpose. Colloidal GNBs were designed as a nanomedicine platform with “soft” nature that is amenable to bio-elimination, an essential feature for in vivo efficacy and safety. The GNBs were synthesized as lipid- or polymer-encapsulated colloidal particles incorporating tiny gold nanoparticles (2–4 nm) in three tunable sizes (90 nm, 150 nm and 290 nm). Smaller GNBs were noted trafficking through the lymphatic system and accumulating more efficiently in the lymph nodes in comparison to the bigger nanoagents. At 20 min, the GNBs reached the SLN and were no longer observed within the draining lymphatic vessel. Within 1 h post-injection, the contrast ratio of the lymph nodes with the surrounding blood vessels was 9:1. These findings were also supported by analytical measurements of the ex vivo tissue samples. Results indicate that cumulative nanoparticle deposition in lymph nodes is size dependent and that high payloads of gold, although offering greater contrast in vitro, may yield nanoagents with poor intradermal migration and lymphatic transport characteristics

    Photoacoustic molecular imaging of angiogenesis using theranostic α_νβ_3-targeted copper nanoparticles incorporating a sn-2 lipase-labile fumagillin prodrug

    Get PDF
    Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. Α_νβ_3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, α_νβ_3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features

    α_νβ_3-targeted Copper Nanoparticles Incorporating an Sn 2 Lipase-Labile Fumagillin Prodrug for Photoacoustic Neovascular Imaging and Treatment

    Get PDF
    Photoacoustic (PA) tomography enables multiscale, multicontrast and high-resolution imaging of biological structures. In particular, contrast-enhanced PA imaging offers high-sensitivity noninvasive imaging of neovessel sprout formation and nascent tubules, which are important biomarkers of malignant tumors and progressive atherosclerotic disease. While gold nanoparticles or nanorods have been used as PA contrast agents, we utilized high-density copper oleate small molecules encapsulated within a phospholipid surfactant (CuNPs) to generate a soft nanoparticle with PA contrast comparable to that from gold. Within the NIR window, the copper nanoparticles provided a 4-fold higher signal than that of blood. Α_νβ_3-integrin targeting of CuNPs in a Matrigel™ angiogenesis mouse model demonstrated prominent (p<0.05) PA contrast enhancement of the neovasculature compared with mice given nontargeted or competitively inhibited CuNPs. Furthermore, incorporation of a Sn 2 lipase-labile fumagillin prodrug into the CuNP outer lipid membrane produced marked antiangiogenesis in the same model when targeted to the α_νβ_3-integrin, providing proof of concept in vivo for the first targeted PA - drug delivery agent

    ανβ3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment

    Get PDF
    licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2014.06.30; Accepted: 2014.09.18; Published: 2015.01.01 Photoacoustic (PA) tomography enables multiscale, multicontrast and high-resolution imaging of biological structures. In particular, contrast-enhanced PA imaging offers high-sensitivity noninva-sive imaging of neovessel sprout formation and nascent tubules, which are important biomarkers of malignant tumors and progressive atherosclerotic disease. While gold nanoparticles or nano-rods have been used as PA contrast agents, we utilized high-density copper oleate small molecules encapsulated within a phospholipid surfactant (CuNPs) to generate a soft nanoparticle with PA contrast comparable to that from gold. Within the NIR window, the copper nanoparticles pro-vided a 4-fold higher signal than that of blood. ανβ3-integrin targeting of CuNPs in a MatrigelTM angiogenesis mouse model demonstrated prominent (p&lt;0.05) PA contrast enhancement of th

    Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons

    Get PDF
    Detection of sentinel lymph node (SLN) using photoacoustic imaging is an emerging technique for noninvasive axillary staging of breast cancer. Due to the absence of intrinsic contrast inside the lymph nodes, exogenous contrast agents are used for photoacoustic detection. In this work, we have demonstrated near infrared detection of SLN with gold nanobeacons (GNBs) providing the photoacoustic contrast in a rodent model. We found that size dictates the in vivo characteristics of these nanoparticles in SLN imaging. Larger nanobeacons with high payloads of gold were not as efficient as smaller size nanobeacons with lower payloads for this purpose. Colloidal GNBs were designed as a nanomedicine platform with “soft” nature that is amenable to bio-elimination, an essential feature for in vivo efficacy and safety. The GNBs were synthesized as lipid- or polymer-encapsulated colloidal particles incorporating tiny gold nanoparticles (2–4 nm) in three tunable sizes (90 nm, 150 nm and 290 nm). Smaller GNBs were noted trafficking through the lymphatic system and accumulating more efficiently in the lymph nodes in comparison to the bigger nanoagents. At 20 min, the GNBs reached the SLN and were no longer observed within the draining lymphatic vessel. Within 1 h post-injection, the contrast ratio of the lymph nodes with the surrounding blood vessels was 9:1. These findings were also supported by analytical measurements of the ex vivo tissue samples. Results indicate that cumulative nanoparticle deposition in lymph nodes is size dependent and that high payloads of gold, although offering greater contrast in vitro, may yield nanoagents with poor intradermal migration and lymphatic transport characteristics

    A Facile Synthesis of Novel Self-Assembled Gold Nanorods Designed for Near-Infrared Imaging

    Get PDF
    Molecular imaging techniques now allow recognition of early biochemical, physiological, and anatomical changes before manifestation of gross pathological changes. Photoacoustic imaging represents a novel non-ionizing detection technique that combines the advantages of optical and ultrasound imaging. Noninvasive photoacoustic tomography (PAT) imaging in combination with nanoparticle-based contrast agents show promise in improved detection and diagnosis of cardiovascular and cancer related diseases. In this report, a novel strategy is introduced to achieve self-assembled colloidal gold nanorods, which are constrained to the vasculature. Gold nanorods (2–4 nm) were incorporated into the core of self-assembled lipid-encapsulated nanoparticles (sGNR) (∼130 nm), providing more than hundreds of gold atoms per nanoparticle of 20% colloid suspension. The physico-chemical characterization in solution and anhydrous state with analytical techniques demonstrated that the particles were spherical and highly mono dispersed. In addition to the synthesis and characterization, sensitive near-infrared photoacoustic detection was impressively demonstrated in vitro
    corecore