13,376 research outputs found
Electromagnetic decays of vector mesons as derived from QCD sum rules
We apply the method of QCD sum rules in the presence of external
electromagnetic fields to the problem of the electromagnetic
decays of various vector mesons, such as , and . The induced condensates obtained previously
from the study of baryon magnetic moments are adopted, thereby ensuring the
parameter-free nature of the present calculation. Further consistency is
reinforced by invoking various QCD sum rules for the meson masses. The
numerical results on the various radiative decays agree very well with the
experimental data.Comment: To appear in Phys. Lett.
Photoluminescence and spectral switching of single CdSe/ZnS colloidal nanocrystals in poly(methyl methacrylate)
Emission from single CdSe nanocrystals in PMMA was investigated. A fraction
of the nanocrystals exhibiting switching between two energy states, which have
similar total intensities, but distinctly different spectra were observed. We
found that the spectral shift characteristic frequency increases with the pump
power. By using the dynamic shift in the spectral position of emission peaks,
we were able to correlate peaks from the same nanocrystal. The measured
correlation is consistent with assignment of low energy lines to phonon
replicas.Comment: 5 pages, 4 figure
Multiple Unpinned Dirac Points in Group-Va Single-layers with Phosphorene Structure
Emergent Dirac fermion states underlie many intriguing properties of
graphene, and the search for them constitute one strong motivation to explore
two-dimensional (2D) allotropes of other elements. Phosphorene, the ultrathin
layers of black phosphorous, has been a subject of intense investigations
recently, and it was found that other group-Va elements could also form 2D
layers with similar puckered lattice structure. Here, by a close examination of
their electronic band structure evolution, we discover two types of Dirac
fermion states emerging in the low-energy spectrum. One pair of (type-I) Dirac
points is sitting on high-symmetry lines, while two pairs of (type-II) Dirac
points are located at generic -points, with different anisotropic
dispersions determined by the reduced symmetries at their locations. Such
fully-unpinned (type-II) 2D Dirac points are discovered for the first time. In
the absence of spin-orbit coupling, we find that each Dirac node is protected
by the sublattice symmetry from gap opening, which is in turn ensured by any
one of three point group symmetries. The spin-orbit coupling generally gaps the
Dirac nodes, and for the type-I case, this drives the system into a quantum
spin Hall insulator phase. We suggest possible ways to realize the unpinned
Dirac points in strained phosphorene.Comment: 30 pages, 6 figure
(D* to D + gamma) and (B* to B + gamma) as derived from QCD Sum Rules
The method of QCD sum rules in the presence of the external electromagnetic
field is used to analyze radiative decays of charmed or bottomed
mesons such as and , with the
susceptibilities obtained previously from the study of baryon magnetic moments.
Our predictions on decays agree very well with the experimental
data. There are differences among the various theoretical predictions on
decays but the data are not yet available.Comment: 11 pages, Late
Orbit and spin evolution of the synchronous binary stars on the main sequence phase
The sets of the synchronous equations are derived from the sets of
non-synchronous equations The analytical solutions are given by solving the set
of differential equations. The results of the evolutionary tendency of the
orbit-spin are that the semi-major axis shrinks gradually with time: the
orbital eccentricity dereacses gradually with time until the orbital
circularization; the orbital period shortens gradually with time and the
rotational angular velocity of primary component speed up with time gradually
before the orbit-rotation achieved the circularization The theoretical results
are applied to evolution of the orbit and spin of synchronous binary stars
Algol A, B on the main sequence phase The circularization time and life time
(age) and the evolutional numerical solutions of orbit and spin when
circularization time are estimeted for Algol A, B. The results are discussed
and concluded.Comment: 8 pages, accepted for publication in RA
Clinicopathological features and CCT2 and PDIA2 expression in gallbladder squamous/adenosquamous carcinoma and gallbladder adenocarcinoma
BACKGROUND: Gallbladder cancer (GBC) is a relatively uncommon carcinoma among gastrointestinal cancers and usually has a rather poor prognosis. The most common subtype of GBC is adenocarcinoma (AC), which accounts for about 90% of GBC. Squamous carcinoma/adenosquamous carcinoma (SC/ASC) are comparatively rare histopathological subtypes of GBC. The clinicopathological features and biological behaviors of SC/ASC have not been well-characterized. No molecular biomarkers are currently available for predicting the progression, metastasis, and prognosis of the SC/ASC subtype of GBC. METHODS: We examined the expression levels of CCT2 and PDIA3 by immunohistochemistry (IHC) staining in human GBC tissue samples collected from 46 patients with SC/ASC and evaluated the clinicopathological significance of both CCT2 and PDIA3 expression in the SC/ASC subtypes of GBC by Kaplan-Meier analysis and multivariate Cox regression analysis. For comparison, we included specimens from 80 AC patients in our study to investigate the specificity of CCT2 and PDIA3 expression in GBC subtypes. RESULTS: We found that the positive expression of CCT2 and PDIA3 was significantly associated with clinicopathological features of both SC/ASC and AC specimens, including high TNM stage and lymph node metastasis. Univariate analysis revealed that the two-year survival rate was significantly lower for patients with positive expression of CCT2 and PDIA3 than for those with negative expression. Multivariate analysis also indicated that the positive expression of CCT2 and PDIA3 was negatively correlated with poor postoperative patient survival and positively correlated with high mortality. CONCLUSIONS: Our study suggests that positive expression of CCT2 or PDIA3 is associated with tumor progression and the clinical behavior of gallbladder carcinoma. Therefore, CCT2 and PDIA3 could be potentially important diagnostic and prognostic biomarkers for both SC/ASC and AC subtypes of GBC
Enhanced DPPH radical scavenging activity and DNA protection effect of litchi pericarp extract by Aspergillus awamori bioconversion
BACKGROUND: Litchi (Litchi chinensis Sonn.) pericarp is a major byproduct which contains a significant amount of polyphenol. This study was designed to biotransformation litchi pericarp extract (LPE) by Aspergillus awamori to produce more bioactive compounds with stronger antioxidant activities. RESULTS: The study exhibited that the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities significantly (p < 0.05) increased from 15.53% to 18.23% in the water-extracted fraction and from 25.41% to 36.82% in the ethyl acetate-extracted fraction. Application of DNA cleavage assay further demonstrated the enhanced protection effect of the fermented phenolics on DNA damage. It is also noted that the water-extracted fraction of the fermented LPE possessed a much stronger capacity than the ethyl acetate-extracted fraction to prevent from damage of supercoiled DNA. Interestingly, it was found that some new compounds such as catechin and quercetin appeared after of A. awamori fermentation of LPE, which could account for the enhanced antioxidant activity. CONCLUSION: The DPPH radical scavenging activity and DNA protection effect of LPE were increased by Aspergillus awamori bioconversion while some compounds responsible for the enhanced antioxidant activity were identified. This study provided an effective way of utilizing fruit pericarp as a readily accessible source of the natural antioxidants in food industry and, thus, extended the application area such as fruit by-products
- …
