5 research outputs found

    Entry of influenza A virus into host cells - recent progress and remaining challenges

    Full text link
    Influenza A viruses (IAV) are a major burden for human health and thus the topic of intense research efforts. The entry of IAV into host cells is of particular interest as early infection steps are the ideal target for intervention strategies. Here, we review recent key findings in the field of IAV entry. Specifically, we discuss the identification of novel entry receptors, the emerging role of the viral neuraminidase in entry, as well as recent progress from structural studies on the viral hemagglutinin during the fusion process and the viral matrix protein involved in virus uncoating. We also highlight remaining gaps in our understanding of IAV entry and point out important questions for ongoing research efforts

    Proteomic Identification of Potential Target Proteins of Cathepsin W for Its Development as a Drug Target for Influenza

    Full text link
    Influenza A virus (IAV) coopts numerous host factors for efficient replication. The cysteine protease cathepsin W (CTSW) has been identified as one host factor required for IAV entry, specifically for the escape of IAVs from late endosomes. However, the substrate specificity of CTSW and the proviral mechanism are thus far unknown. Here, we show that intracellular but not secreted CTSW promotes viral entry. We reveal 79 potential direct and 31 potential indirect cellular target proteins of CTSW using the high-throughput proteomic approach terminal amine isotopic labeling of substrates (TAILS) and determine the cleavage motif shared by the substrates of CTSW. Subsequent integration with data from RNA interference (RNAi) screens for IAV host factors uncovers first insights into the proviral function of CTSW. Notably, CTSW-deficient mice display a 25% increase in survival and a delay in mortality compared to wild-type mice upon IAV infection. Altogether, these findings support the development of drugs targeting CTSW as novel host-directed antiviral therapies. IMPORTANCE Influenza viruses are respiratory pathogens and pose a constant threat to human health. Although antiviral drugs are available for influenza, the emergence and spread of drug-resistant viruses is cause for concern. Therefore, the development of new antivirals with lower chances of their target viruses acquiring resistance is urgently needed to reduce the high morbidity and mortality caused by influenza. Promising alternatives to drugs targeting viral proteins are those directed against host factors required for viral replication. The cysteine protease cathepsin W (CTSW) is an important host factor for IAV replication, and its proteolytic activity is required for fusion of viral and endosomal membranes. In this work, we identify a number of hitherto unknown CTSW substrates, providing new insights into virus-host interactions, and reveal that CTSW might also play a proviral role in an in vivo model. These results support the development of CTSW as a drug target for next-generation antivirals against influenza

    Proteomic identification of potential target proteins of cathepsin W for its development as a drug target for influenza

    Get PDF
    Influenza A virus (IAV) coopts numerous host factors for efficient replication. The cysteine protease cathepsin W (CTSW) has been identified as one host factor required for IAV entry, specifically for the escape of IAVs from late endosomes. However, the substrate specificity of CTSW and the proviral mechanism are thus far unknown. Here, we show that intracellular but not secreted CTSW promotes viral entry. We reveal 79 potential direct and 31 potential indirect cellular target proteins of CTSW using the high-throughput proteomic approach terminal amine isotopic labeling of substrates (TAILS) and determine the cleavage motif shared by the substrates of CTSW. Subsequent integration with data from RNA interference (RNAi) screens for IAV host factors uncovers first insights into the proviral function of CTSW. Notably, CTSW-deficient mice display a 25% increase in survival and a delay in mortality compared to wild-type mice upon IAV infection. Altogether, these findings support the development of drugs targeting CTSW as novel host-directed antiviral therapies

    IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization

    Full text link
    The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA). Decreased virion HA levels did not reduce infectivity, suggesting that high HA density on IAV virions may be an antagonistic strategy used by the virus to prevent direct inhibition. However, we found that IFITM3-mediated reduction in HA content sensitizes IAV to antibody-mediated neutralization. Mathematical modeling predicted that this effect decreases and delays peak IAV titers, and we show that, indeed, IFITM3-mediated sensitization of IAV to antibody-mediated neutralization impacts infection outcome in an in vivo mouse model. Overall, our data describe a previously unappreciated interplay between the innate effector IFITM3 and the adaptive immune response

    Proteomic Identification of Potential Target Proteins of Cathepsin W for Its Development as a Drug Target for Influenza

    No full text
    Influenza A virus (IAV) coopts numerous host factors for efficient replication. The cysteine protease cathepsin W (CTSW) has been identified as one host factor required for IAV entry, specifically for the escape of IAVs from late endosomes. However, the substrate specificity of CTSW and the proviral mechanism are thus far unknown. Here, we show that intracellular but not secreted CTSW promotes viral entry. We reveal 79 potential direct and 31 potential indirect cellular target proteins of CTSW using the high-throughput proteomic approach terminal amine isotopic labeling of substrates (TAILS) and determine the cleavage motif shared by the substrates of CTSW. Subsequent integration with data from RNA interference (RNAi) screens for IAV host factors uncovers first insights into the proviral function of CTSW. Notably, CTSW-deficient mice display a 25% increase in survival and a delay in mortality compared to wild-type mice upon IAV infection. Altogether, these findings support the development of drugs targeting CTSW as novel host-directed antiviral therapies. IMPORTANCE Influenza viruses are respiratory pathogens and pose a constant threat to human health. Although antiviral drugs are available for influenza, the emergence and spread of drug-resistant viruses is cause for concern. Therefore, the development of new antivirals with lower chances of their target viruses acquiring resistance is urgently needed to reduce the high morbidity and mortality caused by influenza. Promising alternatives to drugs targeting viral proteins are those directed against host factors required for viral replication. The cysteine protease cathepsin W (CTSW) is an important host factor for IAV replication, and its proteolytic activity is required for fusion of viral and endosomal membranes. In this work, we identify a number of hitherto unknown CTSW substrates, providing new insights into virus-host interactions, and reveal that CTSW might also play a proviral role in an in vivo model. These results support the development of CTSW as a drug target for next-generation antivirals against influenza.ISSN:2165-049
    corecore