20 research outputs found

    High-Fat Diet with Acyl-Ghrelin Treatment Leads to Weight Gain with Low Inflammation, High Oxidative Capacity and Normal Triglycerides in Rat Muscle

    Get PDF
    Obesity is associated with muscle lipid accumulation. Experimental models suggest that inflammatory cytokines, low mitochondrial oxidative capacity and paradoxically high insulin signaling activation favor this alteration. The gastric orexigenic hormone acylated ghrelin (A-Ghr) has antiinflammatory effects in vitro and it lowers muscle triglycerides while modulating mitochondrial oxidative capacity in lean rodents. We tested the hypothesis that A-Ghr treatment in high-fat feeding results in a model of weight gain characterized by low muscle inflammation and triglycerides with high muscle mitochondrial oxidative capacity. A-Ghr at a non-orexigenic dose (HFG: twice-daily 200-µg s.c.) or saline (HF) were administered for 4 days to rats fed a high-fat diet for one month. Compared to lean control (C) HF had higher body weight and plasma free fatty acids (FFA), and HFG partially prevented FFA elevation (P<0.05). HFG also had the lowest muscle inflammation (nuclear NFkB, tissue TNF-alpha) with mitochondrial enzyme activities higher than C (P<0.05 vs C, P = NS vs HF). Under these conditions HFG prevented the HF-associated muscle triglyceride accumulation (P<0.05). The above effects were independent of changes in redox state (total-oxidized glutathione, glutathione peroxidase activity) and were not associated with changes in phosphorylation of AKT and selected AKT targets. Ghrelin administration following high-fat feeding results in a novel model of weight gain with low inflammation, high mitochondrial enzyme activities and normalized triglycerides in skeletal muscle. These effects are independent of changes in tissue redox state and insulin signaling, and they suggest a potential positive metabolic impact of ghrelin in fat-induced obesity

    Higher unacylated ghrelin and insulin sensitivity following dietary restriction and weight loss in obese humans

    No full text
    Background & aims: Unacylated ghrelin (UnAG) modulates insulin sensitivity. Low plasma UnAG occurs in obesity and potentially contributes to obesity-associated insulin resistance. We hypothesized that improvements in insulin sensitivity in obese people induced by moderate caloric restriction (CR) may be paralleled and at least in part explained by concurrent increases in UnAG levels. Methods: 20 general community obese people were randomly assigned to 16-week CR (n = 11) or control diet (n = 9). We investigated the impact of CR on the interaction between insulin sensitivity changes [area under the curve (AUCg) of glucose infusion to maintain euglycemia during hyperinsulinemic-euglycemic clamp] and plasma total (TotalG), acylated (AG) and Unacylated ghrelin (UnAG). Plasma pro-inflammatory tumor necrosis factor alpha (TNF\u3b1) and anti-inflammatory interleukin-10 (IL-10) were also measured since changes in inflammation may contribute to UnAG activities. Results: CR reduced BMI and increased insulin sensitivity (p < 0.05). TotalG and UnAG but not AG increased in CR but not in Control (p < 0.05). Il-10 and IL-10/TNF\u3b1 ratio also increased in CR (p < 0.05). Changes in UnAG were positively associated with changes in AUCg in all subjects (n = 20; p < 0.01) also after adjustment for treatment and changes in BMI and cytokines. Conclusions: Caloric restriction modifies circulating ghrelin profile with selective increase in unacylated hormone in obese individuals. The current study supports the hypothesis that higher unacylated ghrelin contributes to improvements in insulin sensitivity following diet-induced weight loss in human obesity

    High plasma retinol binding protein 4 (RBP4) is associated with systemic inflammation independently of low RBP4 adipose expression and is normalized by transplantation in nonobese, nondiabetic patients with chronic kidney disease

    No full text
    Objective Adipose-secreted retinol binding protein 4 (RBP4) circulates in free (active) and transthyretin (TTR)-bound forms and may be associated with obesity-related inflammation. Potential involvement of plasma and adipose RBP4 in systemic inflammation in the absence of obesity and diabetes is unknown. Inflammation reduces survival in chronic kidney disease (CKD) [particularly in maintenance haemodialysis (MHD)], and plasma RBP4 may increase with renal dysfunction. We investigated (i) potential associations between RBP4 and inflammation in CKD and (ii) the role of adipose tissue in this putative interaction. Design Cross-sectional. Patients Nonobese, nondiabetic patients with CKD undergoing conservative (CT: n = 10) or MHD treatment (n = 25) and healthy control subjects (C: n = 11). Renal transplant recipients (n = 5) were studied to further assess the impact of restored near-normal renal function. Measurements Plasma RBP4, TTR and C-reactive protein (CRP), adipose RBP4 expression. Results Plasma RBP4, TTR and CRP were highest in MHD (P < 0\ub705). Adipose RBP4 mRNA was, however, comparably low in CT and MHD (P < 0\ub705 vs C), and all parameters were normalized in transplant recipients (P < 0\ub705 vs MHD). In all subjects (n = 51), creatinine and TTR (P < 0\ub705) but not adipose RBP4 mRNA were associated with plasma RBP4. Plasma RBP4 but not its adipose expression was in turn associated positively (P < 0\ub705) with CRP independently of creatinine-TTR. Conclusions High plasma RBP4 and inflammation are clustered in CKD in the absence of obesity and diabetes and are normalized by transplantation. Adipose RBP4 expression is not involved in plasma RBP4 elevation, which appears to be mainly because of passive accumulation, or in CKD-associated inflammation. \ua9 2011 Blackwell Publishing Ltd

    Low fat adiponectin expression is associated with oxidative stress in nondiabetic humans with chronic kidney disease--impact on plasma adiponectin concentration

    No full text
    In spite of association between high plasma adiponectin and high metabolic and cardiovascular (CV) risk, highest adiponectin increments retain CV and metabolic protective effects in advanced chronic kidney disease (CKD). Passive accumulation can favor CKD-associated hyperadiponectinemia but potential additional regulation by adipose tissue remains undefined. Oxidative stress (OS) is associated with metabolic and CV disease and with CKD [increasing from conservative treatment (CT) to maintenance hemodialysis (MHD)], and OS can reduce adiponectin expression in experimental models. OS (in the form of plasma thiobarbituric acid-reactive substances: TBARS), subcutaneous adipose adiponectin mRNA, and plasma adiponectin were studied in CKD patients (stages 4 and 5) on CT (n = 7) or MHD (n = 11). Compared with CT and controls (C: n = 6) MHD had highest TBARS and lowest adiponectin mRNA (P < 0.05) with lower adipose adiponectin protein (P < 0.05 vs. CT). MHD also had lower plasma adiponectin than CT, although both had higher adiponectin than C (P < 0.05). In renal transplant recipients (RT: CKD stage 3; n = 5) normal TBARS were, in turn, associated with normal adiponectin mRNA (P < 0.05 vs. MHD). In all CKD (n = 23), adiponectin mRNA was associated positively with adiponectin plasma concentration (P < 0.01). In all subjects (n = 29), adiponectin mRNA was related (P < 0.05) negatively with TBARS after adjusting for plasma C-reactive protein (CRP) or CRP and creatinine. Thus altered OS, adiponectin expression, and plasma concentration represent a novel cluster of metabolic and CV risk factors in MHD that are normalized in RT. The data suggest novel roles of 1) MHD-associated OS in modulating adiponectin expression and 2) adipose tissue in contributing to circulating adiponectin in advanced CKD
    corecore