33 research outputs found

    Variable influence on the equatorial troposphere associated with SSW using ERA-Interim

    Get PDF
    Sudden stratospheric warming (SSW) events are identified to investigate their influence on the equatorial tropospheric climate. Composite analysis of warming events from Era-Interim (1979–2013) record a cooling of the tropical lower stratosphere with corresponding changes in the mean meridional stratospheric circulation. A cooling of the upper troposphere induces enhanced convective activity near the equatorial region of the Southern Hemisphere and suppressed convective activity in the off-equatorial Northern Hemisphere. After selecting vortex splits, the see-saw pattern of convective activity in the troposphere grows prominent and robust

    long-term variability and future trends

    Full text link
    In dieser Arbeit wird die Wirkung von steigenden Treibhausgaskonzentrationen auf die Anzahl großer StratosphĂ€renerwĂ€rmungen (SSWs) auf Grundlage von Ensemblesimulationen und unter BerĂŒcksichtigung interner VariabilitĂ€t untersucht. Dabei wird ein zur Beantwortung der Fragestellung weiterentwickelter Algorithmus zur Identifikation von SSWs verwendet. Hier wird gezeigt, dass SSWs durch die Implementierung eines Klimakriteriums besser von ”Final Warmings“ abgegrenzt werden können als mit frĂŒheren objektiven Verfahren. Der untersuchte große Datensatz wurde mit dem Ozean-TroposphĂ€re- StratosphĂ€re Modell EGMAM (ECHO-G mit mittlerer AtmosphĂ€re Modell) erzeugt und umfasst Kontrollsimulationen, Szenarienrechnungen inklusive StabilisierungszeitrĂ€umen und idealisierte Experimente. Durch Anwendung des Algorithmus wird gezeigt, dass EGMAM im Vergleich zu den Beobachtungen die Anzahl an SSWs um ungefĂ€hr die HĂ€lfte unterschĂ€tzt. Dennoch simuliert das Modell weitere Eigenschaften von SSWs wie die StĂ€rke, die Dauer sowie das AbwĂ€rtswandern stratosphĂ€rischer Anomalien im Zusammenhang mit SSWs in guter Übereinstimmung mit den Beobachtungen. FĂŒr den historischen Zeitraum von 1860-2000 kann fĂŒr den leichten Anstieg der Treibhausgaskonzentrationen kein Einfluss auf die Anzahl von SSWs festgestellt werden. Untersuchungen des 21. Jahrhunderts zeigen fĂŒr alle Szenarien (B1, A1B und A2) trotz starker interner VariabilitĂ€t einen Anstieg in der Anzahl von SSWs. Durch die Hinzunahme der im Anschluss an die transienten Phasen gerechneten StabilisierungszeitrĂ€ume und der idealisierten Experimente ergibt bei sich Betrachtung hinreichend großer Stichproben ein linearer Zusammenhang zwischen der HĂ€ufigkeit von SSWs und dem Strahlungsantrieb. Danach wird eine Verdopplung in der Anzahl von SSWs im Vergleich zum vorindustriellen Kontrolllauf erreicht, wenn das Treibhausgasniveau des A2-Szeanrios im Jahr 2100 erreicht wird bzw. die CO2-Konzentrationen vervierfacht werden. Diese AbschĂ€tzung gibt erstmalig einen Überblick ĂŒber die Unsicherheiten, die mit den verschiedenen Szenarien sowie interner VariabilitĂ€t hinsichtlich der zukĂŒnftigen HĂ€ufigkeit von SSWs verknĂŒpft sind. Als Ursache fĂŒr die Zunahme an SSWs wird eine Steigerung des troposphĂ€rischen Wellenflusses in die StratosphĂ€re sowie die Verminderung der mittleren Windgeschwindigkeit in 60°N und 10 hPa identifiziert, welche durch den anthrogenen Klimawandel bedingt sind. FĂŒr die SĂŒdhemisphĂ€re, in der das Modell weniger als ein SSW in 100 Jahren simuliert, verĂ€ndert sich die Anzahl an SSWs mit steigenden Treibhausgaskonzentrationen hingegen nicht. Im Anschluss an die projezierten Änderungen wird die VariabilitĂ€t von SSWs auf verschiedenen Zeitskalen intensiv untersucht. So schwankt die HĂ€ufigkeit simulierter SSWs im Kontrolllauf unter vorindustriellen Bedingungen im Vergleich zu den Beobachtungen zwischen 13% und 70%. Die Untersuchung des Frequenzspektrum, ermittelt mit einer Wavelet-Transformation, offenbart erstmalig eine periodische Schwingung in der Anzahl von SSWs mit einer Periode von 52 Jahren. Ferner wird in der Arbeit ein Mechanismus erarbeitet, welcher die Entstehung der multi-dekadischen VariabilitĂ€t erklĂ€rt. Es wird gezeigt, dass Phasen mit einer erhöhten Anzahl von SSWs mit einem stĂ€rkerem troposphĂ€rischen Wellenfluss in die StratosphĂ€re, einem positiven WĂ€rmefluss aus dem Nordatlantik in die AtmosphĂ€re, einer erhöhten Anzahl von Blockierungen und positiven Scheeanomalien ĂŒber Eurasien einhergehen. Der stĂ€rkste Zusammenhang besteht dabei zwischen den SSWs und dem WĂ€rmefluss aus dem Nordatlantik. Die multi-dekadische VariabilitĂ€t ist die Folge einer Eigenschwingung im Nordatlantik, die durch abwĂ€rtswandernde stratosphĂ€rische Anomalien im SpĂ€twinter angeregt wird, welche in Verbindung mit SSWs stehen.The effect of increasing greenhouse gas concentrations on the number of sudden stratospheric warmings (SSWs) is investigated on the basis of ensemble simulations under consideration of internal variability. Here, an existing algorithm is further optimized for the identification of SSWs to answer this scientific question. It is shown here that in comparison to previous objective methods SSWs are better distinguished from ”Final Warmings“ by implementing a climate criterion. The large analyzed data set is generated with the ocean- troposphere-stratosphere model EGMAM (ECHO-G with middle atmosphere model) and includes control simulations, scenario projections continued with stabilized concentrations and idealized experiments. The applycation of the algorithm shows that EGMAM generates only half the number of SSWs compared to observations. Nevertheless, further simulated properties of SSWs such as the strength, duration and downward coupling of stratospheric anomalies associated with SSWs are in good agreement with observations. For the historical period 1860-2000 the slight increase in greenhouse gas concentrations does not affect the number of identified SSWs. Investigations of the 21st century show for all scenarios (B1, A1B and A2) an increase in the number of SSWs, which is superimposed by a considerable amount of internal variability. Only by including the stabilization periods and results of the idealized experiments the sample is sufficiently large to show a clear linear correlation between the number of SSWs and the radiative forcing. Following this relationship a doubling in the number of SSWs compared to the pre-industrial control run is achieved if the greenhouse gas levels of the A2-szeanrio in 2100 is reached or the CO2 concentrations are quadrupled. The present study gives for the first time an overview of the uncertainties associated with different scenarios as well as internal variability regarding the future number of SSWs. The cause for the increase of SSWs is a strengthening of resolved wave flux into the stratosphere and the weakening of the zonal mean zonal wind at 60°N and 10 hPa due to climate change. For the southern hemisphere, where the model simulates less than one SSW in 100 years, the number of SSWs does not change due to the increase of greenhouse gas concentrations. Following the analyses of the projected changes, the variability of SSWs on different time scales is studied in detail on the basis of a long pre-industrial control run. The number of simulated SSWs under pre-industrial conditions varies between 13% and 70% of the observed amount. Investigations of the frequency spectrum, determined with a Wavelet transformation, reveals for the first time a periodic oscillation in the number of SSWs with a period of 52 years. Moreover, in this study a mechanism is developed to explain the origin of this multi-decadal variability. It is shown that periods with an increased number of SSWs are connected to an increased tropospheric wave flux into the stratosphere, a positive heat flux from the North Atlantic into the atmosphere, an increased number of blockings and positiv snow cover anomalies over Eurasia. The strongest link exists between SSWs and heat flux from the North Atlantic. The multi-decadal variability is the result of a natural mode in the North Atlantic, which is stimulated by downward progressing stratospheric anomalies related to SSWs

    A regional climate model simulation over the Baltic Sea region for the last Millennium

    Full text link
    Variabilitet och lĂ„ngsiktig klimatförĂ€ndring i Fennoskandien undersöks i en 1000 Ă„rlĂ„ng under det senaste milleniet i en 1000 Ă„r lĂ„ng klimatmodellsimulering. Vi anvĂ€nder Rossby Centresregionala klimatmodell (RCA3) med randvĂ€rden frĂ„n en global klimatmodell (GCM). Effekten avvariabilitet i solinstrĂ„lning, Ă€ndrade astronomiska förhĂ„llanden och Ă€ndringar ivĂ€xthusgskoncentrationer har anvĂ€nts för att driva modellerna. Resultaten visar att RCA3 genererar enmedeltida varm period (MCA) som Ă€r den varmaste under hela milleniet undantaget 1900-talet.Dessutom visar resultaten pĂ„ en kall ”Lilla Istid” (LIA). I simuleringen motsvarar dessa perioder 1100-1299 (MCA) samt 1600-1799 (LIA). Det hĂ€r överensstĂ€mmer med rekonstruktioner och kan till störstadelen relateras till Ă€ndringar i solinstrĂ„lning. Vi fann vidare att variabiliteten över flera decennier har enbetydande effekt pĂ„ klimatet under MCA och LIA. Variabiliteten över flera decennier kan ibland ocksĂ„förklara motsĂ€gelsefulla rekonstruktioner om dessa Ă€r representativa för kortare icke sammanfallandeperioder. I tillĂ€gg till tidsserier, undersöker vi ocksĂ„ rumsliga mönster hos temperatur, lufttryck ihavsytans nivĂ„, nederbörd, molntĂ€cke, vindhastighet och byighet för bĂ„de sĂ€songs- ochĂ„rsmedelvĂ€rden. De flesta parametrarna visar störst skillnad mellan olika perioder för vintersĂ€songen.Som exempel kan nĂ€mnas att vintern under MCA var 1-2.5 K varmare Ă€n under LIA sett sommedelvĂ€rde över flera decennier.Variabilitet och lĂ„ngsiktig klimatförĂ€ndring i Fennoskandien undersöks i en 1000 Ă„rlĂ„ng under det senaste milleniet i en 1000 Ă„r lĂ„ng klimatmodellsimulering. Vi anvĂ€nder Rossby Centresregionala klimatmodell (RCA3) med randvĂ€rden frĂ„n en global klimatmodell (GCM). Effekten avvariabilitet i solinstrĂ„lning, Ă€ndrade astronomiska förhĂ„llanden och Ă€ndringar ivĂ€xthusgskoncentrationer har anvĂ€nts för att driva modellerna. Resultaten visar att RCA3 genererar enmedeltida varm period (MCA) som Ă€r den varmaste under hela milleniet undantaget 1900-talet.Dessutom visar resultaten pĂ„ en kall ”Lilla Istid” (LIA). I simuleringen motsvarar dessa perioder 1100-1299 (MCA) samt 1600-1799 (LIA). Det hĂ€r överensstĂ€mmer med rekonstruktioner och kan till störstadelen relateras till Ă€ndringar i solinstrĂ„lning. Vi fann vidare att variabiliteten över flera decennier har enbetydande effekt pĂ„ klimatet under MCA och LIA. Variabiliteten över flera decennier kan ibland ocksĂ„förklara motsĂ€gelsefulla rekonstruktioner om dessa Ă€r representativa för kortare icke sammanfallandeperioder. I tillĂ€gg till tidsserier, undersöker vi ocksĂ„ rumsliga mönster hos temperatur, lufttryck ihavsytans nivĂ„, nederbörd, molntĂ€cke, vindhastighet och byighet för bĂ„de sĂ€songs- ochĂ„rsmedelvĂ€rden. De flesta parametrarna visar störst skillnad mellan olika perioder för vintersĂ€songen.Som exempel kan nĂ€mnas att vintern under MCA var 1-2.5 K varmare Ă€n under LIA sett sommedelvĂ€rde över flera decennier.Variabilitet och lĂ„ngsiktig klimatförĂ€ndring i Fennoskandien undersöks i en 1000 Ă„rlĂ„ng under det senaste milleniet i en 1000 Ă„r lĂ„ng klimatmodellsimulering. Vi anvĂ€nder Rossby Centresregionala klimatmodell (RCA3) med randvĂ€rden frĂ„n en global klimatmodell (GCM). Effekten avvariabilitet i solinstrĂ„lning, Ă€ndrade astronomiska förhĂ„llanden och Ă€ndringar ivĂ€xthusgskoncentrationer har anvĂ€nts för att driva modellerna. Resultaten visar att RCA3 genererar enmedeltida varm period (MCA) som Ă€r den varmaste under hela milleniet undantaget 1900-talet.Dessutom visar resultaten pĂ„ en kall ”Lilla Istid” (LIA). I simuleringen motsvarar dessa perioder 1100-1299 (MCA) samt 1600-1799 (LIA). Det hĂ€r överensstĂ€mmer med rekonstruktioner och kan till störstadelen relateras till Ă€ndringar i solinstrĂ„lning. Vi fann vidare att variabiliteten över flera decennier har enbetydande effekt pĂ„ klimatet under MCA och LIA. Variabiliteten över flera decennier kan ibland ocksĂ„förklara motsĂ€gelsefulla rekonstruktioner om dessa Ă€r representativa för kortare icke sammanfallandeperioder. I tillĂ€gg till tidsserier, undersöker vi ocksĂ„ rumsliga mönster hos temperatur, lufttryck ihavsytans nivĂ„, nederbörd, molntĂ€cke, vindhastighet och byighet för bĂ„de sĂ€songs- ochĂ„rsmedelvĂ€rden. De flesta parametrarna visar störst skillnad mellan olika perioder för vintersĂ€songen.Som exempel kan nĂ€mnas att vintern under MCA var 1-2.5 K varmare Ă€n under LIA sett sommedelvĂ€rde över flera decennier.Variabilitet och lĂ„ngsiktig klimatförĂ€ndring i Fennoskandien undersöks i en 1000 Ă„rlĂ„ng under det senaste milleniet i en 1000 Ă„r lĂ„ng klimatmodellsimulering. Vi anvĂ€nder Rossby Centresregionala klimatmodell (RCA3) med randvĂ€rden frĂ„n en global klimatmodell (GCM). Effekten avvariabilitet i solinstrĂ„lning, Ă€ndrade astronomiska förhĂ„llanden och Ă€ndringar ivĂ€xthusgskoncentrationer har anvĂ€nts för att driva modellerna. Resultaten visar att RCA3 genererar enmedeltida varm period (MCA) som Ă€r den varmaste under hela milleniet undantaget 1900-talet.Dessutom visar resultaten pĂ„ en kall ”Lilla Istid” (LIA). I simuleringen motsvarar dessa perioder 1100-1299 (MCA) samt 1600-1799 (LIA). Det hĂ€r överensstĂ€mmer med rekonstruktioner och kan till störstadelen relateras till Ă€ndringar i solinstrĂ„lning. Vi fann vidare att variabiliteten över flera decennier har enbetydande effekt pĂ„ klimatet under MCA och LIA. Variabiliteten över flera decennier kan ibland ocksĂ„förklara motsĂ€gelsefulla rekonstruktioner om dessa Ă€r representativa för kortare icke sammanfallandeperioder. I tillĂ€gg till tidsserier, undersöker vi ocksĂ„ rumsliga mönster hos temperatur, lufttryck ihavsytans nivĂ„, nederbörd, molntĂ€cke, vindhastighet och byighet för bĂ„de sĂ€songs- ochĂ„rsmedelvĂ€rden. De flesta parametrarna visar störst skillnad mellan olika perioder för vintersĂ€songen.Som exempel kan nĂ€mnas att vintern under MCA var 1-2.5 K varmare Ă€n under LIA sett sommedelvĂ€rde över flera decennier.Variability and long-term climate change in Fennoscandia is investi-gated in a 1000-year long climate model simulation. We use the Rossby Centre Regional Climate model (RCA3) with boundaryconditions from a General Circulation Model (GCM). Solar variability, changes in orbital parameters and changes in greenhouse gases over the last millennium are used to force the climate models. It is shown that RCA3 generates a warm period corresponding to the Medieval Climate Anomaly (MCA) being the warmest period within the millennium apart from the 20th century. Moreover, an analogy forthe Little Ice Age (LIA) was shown to be the coldest period. The simulated periods are 1100-1299 A.D. for the MCA and 1600-1799 A.D. for the LIA, respectively. This is in agreement with recon-structions and mostly related to changes in the solar irradiance. We found that multi decadal variability has an important impact on the appearance of the MCA and LIA. Moreover, multi decadal variability mayhelp to explain sometimes contradicting reconstructions if these are representative for relatively short non-overlapping periods. In addition to time series, we investigate spatial patterns of temperature, sealevel pressure, precipitation, cloud cover, wind speed and gustiness for annual and seasonal means. Most parameters show the clearest response for the winter season. For instance, winter during the MCAare 1-2.5 K warmer than during the LIA for multi decadal averages

    A method for assessing the coastline recession due to the sea level rise by assuming stationary wind-wave climate

    Full text link
    The method introduced in this study for future projection of coastline changes hits the vital need of communicating the potential climate change impact on the coast in the 21th century. A quantitative method called the Dynamic Equilibrium Shore Model (DESM) has been developed to hindcast historical sediment mass budgets and to reconstruct a paleo Digital Elevation Model (DEM). The forward mode of the DESM model relies on paleo-scenarios reconstructed by the DESM model assuming stationary wind-wave climate. A linear relationship between the sea level, coastline changes and sediment budget is formulated and proven by the least square regression method. In addition to its forward prediction of coastline changes, this linear relationship can also estimate the sediment budget by using the information on the coastline and relative sea level changes. Wind climate change is examined based on regional climate model data. Our projections for the end of the 21st century suggest that the wind and wave climates in the southern Baltic Sea may not change compared to present conditions and that the investigated coastline along the Pomeranian Bay may retreat from 10 to 100 m depending on the location and on the sea level rise which was assumed to be in the range of 0.12 to 0.24 m

    SMHI Gridded Climatology

    Full text link
    A gridded dataset (SMHI Gridded Climatology - SMHIGridClim) has been produced forthe years 1961 - 2018 over an area covering the Nordic countries on a grid with 2.5 kmhorizontal resolution. The variables considered are the two meter temperature and twometer relative humidity on 1, 3 or 6 hour resolution, varying over the time periodcovered, the daily minimum and maximum temperatures, the daily precipitation and thedaily snow depth. The gridding was done using optimal interpolation with the gridppopen source software from the Norwegian Meteorological Institute.Observations for the analysis are provided by the Swedish, Finish and Norwegianmeteorological institutes, and the ECMWF. The ECA&D observation data set (e.g. usedfor the gridded E-OBS dataset) was considered for inclusion but was left out because ofcomplications with time stamps and accumulation periods varying between countries andperiods. Quality check of the observations was performed using the open source softwareTITAN, also developed at the Norwegian Meteorological Institute.The first guess to the optimal interpolation was given by statistically downscaledforecasts from the UERRA-HARMONIE reanalysis at 11 km horizontal resolution. Thedownscaling was done to fit the output from the operational MEPS NWP system at 2.5km with a daily and yearly variation in the downscaling parameters.The quality of the SMHIGridClim dataset, in terms of annual mean RMSE, was shown tobe similar to that of gridded datasets covering the other Nordic countries; “seNorge”from Norway and the dataset “FMI_ClimGrid” from Finland.Ett klimatologiskt griddat datasett (SMHI Gridded Climatology - SMHIGridClim) hartagits fram för Ă„ren 1961 – 2018. Data tĂ€cker de nordiska lĂ€nderna med en horisontellupplösning av 2,5 km. Variablerna som tagits fram Ă€r lufttemperatur och relativluftfuktighet vid 2m höjd med en upplösning av1,3 eller 6 timmar beroende av tidsperiod,samt dygnsupplöst min- och maxtemperatur, nederbörd och snödjup. Datasetet Ă€rframtaget med optimal interpolation av stationsdata genom analysverktyget gridpp, somĂ€r en öppet tillgĂ€nglig programvara frĂ„n Norska Meteorologiska Institutet.Observationer till analysen har erhĂ„llits frĂ„n de svenska, norska och finskameteorologiska instituten, samt ECMWF. En ansats gjordes ocksĂ„ att anvĂ€ndaobservationer frĂ„n datasetet ECA&D frĂ„n KNMI, men pĂ„ grund av svĂ„righeter med atttidsstĂ€mplarna för data frĂ„n olika lĂ€nder inte överensstĂ€mde, uteslöts datasetet uranalysen. Kvalitetskontroll av observationerna gjordes med programvaran TITAN, somĂ€ven den finns tillgĂ€nglig frĂ„n och utvecklats av Norska Meteorologiska Institutet.Som en första gissning till interpolationen anvĂ€ndes statistiskt nerskalade prognosfĂ€lt(frĂ„n 11 km till 2,5 km upplösning) frĂ„n UERRA-HARMONIE. Nerskalningen gjordesmot fĂ€lt frĂ„n den operationella numeriska vĂ€derprognosmodellen MEPS. Anpassningengjordes med nedskalningsparametrar som varierar över Ă„ret och dygnet.KvalitĂ©n hos ”SMHIGridClim med avseende pĂ„ genomsnittligt RMSE Ă€r liknande densom tagits fram för griddade data för andra nordiska lĂ€nderna med varierandeanalysmetoder; “seNorge” frĂ„n Norge och “FMI_ClimGrid” frĂ„n Finland

    Observerad klimatförĂ€ndring i Sverige 1860–2021

    Full text link
    Historiska observationer av temperatur, vegetationsperiodens lĂ€ngd, nederbörd, snö, globalstrĂ„lning och geostrofisk vind i Sverige har analyserats. LĂ€ngden pĂ„ de tillgĂ€ngliga tidsserierna varierar mellan de olika variablerna. Det finns dagliga temperaturobservationer frĂ„n Uppsala sĂ„ lĂ„ngt tillbaka som 1722, medan startĂ„ret för de globalstrĂ„lningsmĂ€tningar frĂ„n Ă„tta svenska stationer som analyserats hĂ€r Ă€r sĂ„ sent som 1983. Klimatindikatorer som baseras pĂ„ dessa observationer visar att:‱ Sveriges Ă„rsmedeltemperatur har ökat med 1,9 °C jĂ€mfört med perioden 1861–1890. ‱ Sveriges Ă„rsnederbörd har ökat sedan 1930 frĂ„n 600 mm/Ă„r till nĂ€stan 700 mm/Ă„r. ‱ Antalet dagar med snötĂ€cke har minskat sedan 1950. ‱ GlobalstrĂ„lningen har ökat med cirka 10 % sedan mitten av 1980-talet. ‱ NĂ„gon förĂ€ndring av den geostrofiska vinden kan inte fastslĂ„s frĂ„n 1940.De ovan listade förĂ€ndringarna syftar alla till Ă„rliga genomsnitt för hela Sverige. De Ă€r statistiskt signifikanta i de flesta fall. Bilden blir mer tvetydig dĂ„ genomsnitt för olika landsdelar eller sĂ€songer undersöks. Exempelvis Ă€r den ökade Ă„rsnederbörden mest ett resultat av ökad nederbörd under vinter och höst, medan det inte finns nĂ„gon tydlig trend för sommar och vĂ„r. Det Ă€r ocksĂ„ generellt sett svĂ„rare att fastslĂ„ förĂ€ndringar i extremvĂ€rden. Exempelvis finns ingen signifikant trend vad gĂ€ller vinterns största snödjup, trots en tydlig minskning i antalet dagar med snötĂ€cke.Historical Swedish observations of temperature, length of vegetation period, precipitation, snow, global radiation, and geostrophic wind have been analysed. The length of available time series varies among these variables. Whereas there are temperature observations for Uppsala ranging back to 1722 continuous measurements of global radiation at eight Swedish stations start only in 1983. Climate indicators based on these observations show that: ‱ The annual mean temperature for Sweden has increased by 1.9 °C compared to the period 1861‱ The amount of annual precipitation increased since 1930 from about 600 mm/year to almost 700 mm/year. ‱ The number of days with snow cover has reduced since 1950. ‱ The global radiation increased with circa 10 % since the mid-1980’s. ‱ The geostrophic wind has no clear change pattern since 1940. The listed changes are annual averages for Sweden. These are robust and statistically significant in most cases. The picture is getting more diverse when investigating smaller regions or different seasons instead of annual means. For instance, the increase of precipitation is mainly related to enhanced precipitation during autumn and winter whereas there are no obvious trends in spring and summer. Moreover, changes in extremes are generally harder to identify. For instance, despite the clear negative trend in the number of days with snow cover there is no significant trend for the maximum snow depth. –1890.Denn

    Model study on the variability of ecosystem parameters in the Skagerrak-Kattegat area, effect of load reduction in the North Sea and possible effect of BSAP on Skagerrak-Kattegat area

    Full text link
    Newly developed ecosystem model NEMO-Nordic-SCOBI was applied to Skagerrak - Kattegat area to investigate the variability of some indicators of the ecosystem. Also, two sensitivity runs were performed to investigate possible effect of the Baltic Sea Action Plan (BSAP) and a river loads reduction scenario on the Skagerrak - Kattegat area. The performed investigation could be used “to provide a basis to assist with the interpretation of measurement data before the Intermediate Assessments Eutrophication status assessment”. Comparison of simulation results with observations indicates acceptable model performance. Modeled sea surface salinity, temperature and dissolved inorganic phosphate (DIP) are in good agreement with observations. At the same time, the model has a bias in certain areas of the investigated region for dissolved inorganic nitrogen (DIN) and dissolved silicate during the winter season. However, the model in its current state shows good enough results for the performed investigation. Results of the two sensitivity studies show a decrease of sea surface nutrients concentrations during winter period in both regions. In the Skagerrak area the decrease is due to reduction in river nutrient loads in North Sea. In the Kattegat area there is a decrease of dissolved phosphate due to the implementation of BSAP. At the same time, in both scenarios, no significant changes were obtained for near bottom oxygen or surface layer Chl-a.Den nyligen utvecklade ekosystemmodellen NEMO-Nordic-SCOBI anvĂ€ndes för att studera variabiliteten av nĂ„gra indikatorer för ekosystemet i Skagerrak- kattegatt omrĂ„det. Även tvĂ„ kĂ€nslighetsstudier gjordes för att undersöka möjliga effekter av Baltic Sea Action Plan (BSAP) och en reduktion scenario av nĂ€rsaltstillförsel pĂ„ Skagerrak-Kattegatt omrĂ„det. Den utförda studien kan anvĂ€ndas som underlag och stöd vid tolkningen av observationsdata inför utvĂ€rderingen ”Intermediate Assessments Eutrophication status assessment”. JĂ€mförelsen mellan modelldata och observationer indikerar att modellens resultat Ă€r acceptabla. Modellerade ytvĂ€rden av salthalt, temperatur och löst fosfat (DIP) visar god överenskommelse med observerade vĂ€rden. Samtidigt har modellresultaten avvikelser i vissa delomrĂ„den vad gĂ€ller löst oorganiskt kvĂ€ve (DIN) och löst kisel under vitertid. Dock visar modellen i sitt nuvarande tillstĂ„nd tillrĂ€ckligt goda resultat för den aktuella studien. Resultaten frĂ„n de tvĂ„ kĂ€nslighetsstudierna visar en minskning av nĂ€ringskoncentrationer i ytan under vintern i bĂ„da havsomrĂ„dena. I Skagerrak Ă€r minskningen orsakad av reducerad nĂ€rsaltstillförsel i Nordsjön. I Kattegatt minskar lösta fosfatet pĂ„ grund av genomförandet av BSAP. Ingen av scenarierna visade nĂ„gon signifikant pĂ„verkan pĂ„ syre vid havsbotten eller pĂ„ ytkoncentratiner av Chl-a
    corecore