3 research outputs found

    Revealing the Mechanisms of Smoke during Electron Beam–Powder Bed Fusion by High-Speed Synchrotron Radiography

    No full text
    Electron beam–powder bed fusion (PBF-EB) is an additive manufacturing process that utilizes an electron beam as the heat source to enable material fusion. However, the use of a charge-carrying heat source can sometimes result in sudden powder explosions, usually referred to as “Smoke”, which can lead to process instability or termination. This experimental study investigated the initiation and propagation of Smoke using in situ high-speed synchrotron radiography. The results reveal two key mechanisms for Smoke evolution. In the first step, the beam–powder bed interaction creates electrically isolated particles in the atmosphere. Subsequently, these isolated particles get charged either by direct irradiation by the beam or indirectly by back-scattered electrons. These particles are accelerated by electric repulsion, and new particles in the atmosphere are produced when they impinge on the powder bed. This is the onset of the avalanche process known as Smoke. Based on this understanding, the dependence of Smoke on process parameters such as beam returning time, beam diameter, etc., can be rationalized

    In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges

    No full text
    Additive Manufacturing (AM) is becoming an important technology for manufacturing of metallic materials. Laser-Powder Bed Fusion (L-PBF), Electron beam-Powder Bed Fusion (E-PBF) and Directed Energy Deposition (DED) have attracted significant interest from both the scientific community and the industry since these technologies offer great manufacturing opportunities for niche applications and complex geometries. Understanding the physics behind the complex and dynamic phenomena occurring during these processes is essential for overcoming the barriers that constrain the metal AM development. In-situ synchrotron X-ray characterization is suitable for investigating the microstructure evolution during processing and provides new profound insights. Here, we provide an overview of the research on metal PBF and DED using in-situ synchrotron X-ray imaging, diffraction and small-angle scattering, highlighting the state of the art, the instrumentation, the challenges and the gaps in knowledge that need to be filled. We aim at presenting a scientific roadmap for in-situ synchrotron analysis of metal PBF and DED where future challenges in instrumentation such as the development of experimental stations, sample environments and detectors as well as the need for further application oriented research are included

    A high-speed x-ray radiography setup for in-situ electron beam powder bed fusion at PETRA III

    No full text
    A high-energy white synchrotron x-ray beam enables penetration of relatively thick and highly absorbing samples. At the P61A White Beam Engineering Materials Science Beamline, operated by Helmholtz-Zentrum Hereon at the PETRA III ring of the Deutsches Elektronen-Synchrotron (DESY), a tailored x-ray radiography system has been developed to perform in-situ x-ray imaging experiments at high temporal resolution, taking advantage of the unprecedented x-ray beam flux delivered by ten successive damping wigglers. The imaging system is equipped with an ultrahigh-speed camera (Phantom v2640) enabling acquisition rates up to 25 kHz at maximal resolution and binned mode. The camera is coupled with optical magnification (5x, 10x) and focusing lenses to enable imaging with a pixel size of 1,35 micrometre. The scintillator screens are housed in a special nitrogen gas cooling environment to withstand the heat load induced by the beam, allowing spatial resolution to be optimized down to few micrometres. We present the current state of the system development, implementation and first results of in situ investigations, especially of the electron beam powder bed fusion (PBF-EB) process, where the details of the mechanism of crack and pore formation during processing of different powder materials, e.g. steels and Ni-based alloys, is not yet known
    corecore