16 research outputs found

    Program Evaluation of Affordable Housing Projects for Educators: Pathways to Success

    Get PDF
    Research was conducted to answer the question, what are the successful pathways to the creation of school district-driven affordable housing projects to enhance recruitment and retention of teachers and other school district staff? This research is based on a program evaluation of four current housing developments for educators and school district staff, and describes successful models for implementation that can be followed by other interested school districts or organizations. For the purpose of this research, successful is defined as projects that were able to secure land, funding and public support during the planning phase, and house district workforce upon implementation. This research analyzes four completed school district employee housing programs: Casa Del Maestro (Santa Clara, California), Sage Park (Los Angeles, California), Teachers Village (Newark, New Jersey), and Miller’s Court (Baltimore, Maryland). The four programs were selected to represent various U.S. areas geographically, demographically, and economically, and districts of varying size. Not all proposed projects are built due to an array of issues that will be described. The findings discuss how the four programs have been implemented, whether the programs successfully achieved their goal of creating teacher housing in their area, and lessons learned from proposed programs that were not implemented. The analysis evaluates the relationship between increasing housing costs and low teacher salaries, leading to difficulties with recruitment and retention. To combat this problem, school districts and developers have created teacher housing projects to help subsidize the cost of living for local educators. The programs aim to encourage school district staff, mainly teachers, to remain in their positions, and provide the opportunity for educators to live in the community where they teach

    Direct Generation of Neurosphere-Like Cells from Human Dermal Fibroblasts

    Get PDF
    Neural stem cell (NSC) transplantation replaces damaged brain cells and provides disease-modifying effects in many neurological disorders. However, there has been no efficient way to obtain autologous NSCs in patients. Given that ectopic factors can reprogram somatic cells to be pluripotent, we attempted to generate human NSC-like cells by reprograming human fibroblasts. Fibroblasts were transfected with NSC line-derived cellular extracts and grown in neurosphere culture conditions. The cells were then analyzed for NSC characteristics, including neurosphere formation, gene expression patterns, and ability to differentiate. The obtained induced neurosphere-like cells (iNS), which formed daughter neurospheres after serial passaging, expressed neural stem cell markers, and had demethylated SOX2 regulatory regions, all characteristics of human NSCs. The iNS had gene expression patterns that were a combination of the patterns of NSCs and fibroblasts, but they could be differentiated to express neuroglial markers and neuronal sodium channels. These results show for the first time that iNS can be directly generated from human fibroblasts. Further studies on their application in neurological diseases are warranted

    Cell Transplant

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) are a most appealing source for cell replacement therapy in acute brain lesions. We evaluated the potential of hiPSC therapy in stroke by transplanting hiPSC-derived neural progenitor cells (NPCs) into the postischemic striatum. Grafts received host tyrosine hydroxylase-positive afferents and contained developing interneurons and homotopic GABAergic medium spiny neurons that, with time, sent axons to the host substantia nigra. Grafting reversed stroke-induced somatosensory and motor deficits. Grafting also protected the host substantia nigra from the atrophy that follows disruption of reciprocal striatonigral connections. Graft innervation by tyrosine hydoxylase fibers, substantia nigra protection, and somatosensory functional recovery were early events, temporally dissociated from the slow maturation of GABAergic neurons in the grafts and innervation of substantia nigra. This suggests that grafted hiPSC-NPCs initially exert trophic effects on host brain structures, which precede integration and potential pathway reconstruction. We believe that transplantation of NPCs derived from hiPSCs can provide useful interventions to limit the functional consequences of stroke through both neuroprotective effects and reconstruction of impaired pathways

    Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis

    No full text
    Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work is to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with intellectual disability. Using immunofluorescence and electrophysiological recordings we examined the effects of IL1RAPL1 mutants over-expression on synapse formation and function in cultured rodent hippocampal neurons. Δex6 but not C31R mutation leads to IL1RAPL1 protein instability and mislocalization within dendrites. Analysis of different markers of excitatory synapses and sEPSC recording revealed that both mutants fail to induce pre- and post-synaptic differentiation, contrary to WT IL1RAPL1 protein. Cell aggregation and immunoprecipitation assays in HEK293 cells showed a reduction of the interaction between IL1RAPL1 mutants and PTPδ that could explain the observed synaptogenic defect in neurons. However, these mutants do not affect all cellular signaling since their over-expression still activates JNK pathway. We conclude that both mutations described in this study lead to a partial loss of function of the IL1RAPL1 protein through different mechanisms. Our work highlights the important function of the trans-synaptic PTPδ/ IL1RAPL1 interaction in synaptogenesis and as such, in intellectual disability in the patients.Mariana Ramos-Brossier, Caterina Montani, Nicolas Lebrun, Laura Gritti, Christelle Martin, Christine Seminatore-Nole, Aurelie Toussaint, Sarah Moreno, Karine Poirier, Olivier Dorseuil, Jamel Chelly, Anna Hackett, Jozef Gecz, Eric Bieth, Anne Faudet, Delphine Heron, R. Frank Kooy, Bart Loeys, Yann Humeau, Carlo Sala and Pierre Billuar

    Team VALOR’s ESCHER: A novel electromechanical biped for the DARPA robotics challenge

    Full text link
    © Springer International Publishing AG, part of Springer Nature 2018. The Electric Series Compliant Humanoid for Emergency Response (ESCHER) platform represents the culmination of four years of development at Virginia Tech to produce a full sized force controlled humanoid robot capable of operating in unstructured environments. ESCHER’s locomotion capability was demonstrated at the DARPA Robotics Challenge (DRC) Finals when it successfully navigated the 61 m loose dirt course. Team VALOR, a Track A team, developed ESCHER leveraging and improving upon bipedal humanoid technologies implemented in previous research efforts, specifically for traversing uneven terrain and sustained untethered operation. This paper presents the hardware platform, software, and control systems developed to field ESCHER at the DRC Finals. ESCHER’s unique features include custom linear series elastic actuators (SEAs) in both single and dual actuator configurations and a whole-body control framework supporting compliant locomotion across variable and shifting terrain. A high-level software system designed using the Robot Operating System (ROS) integrated various open-source packages and interfaced with the existing whole-body motion controller. The paper discusses a detailed analysis of challenges encountered during the competition, along with lessons learned critical for transitioning research contributions to a fielded robot. Empirical data collected before, during, and after the DRC Finals validates ESCHER’s performance in fielded environments
    corecore