174 research outputs found
Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing
The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 [mu]m located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 [mu]m in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life
Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing
The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 [mu]m located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 [mu]m in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life
Effects of Size Polydispersity on the Extinction Spectra of Colloidal Nanoparticle Aggregates
We investigate the effect of particle polydispersity on the optical extinction spectra of colloidal aggregates of spherical metallic (silver) nanoparticles, taking into account the realistic interparticle gaps caused by layers of stabilizing polymer adsorbed on the metal surface (adlayers). The spectra of computer-generated aggregates are computed using two different methods. The coupled-multipole method is used in the quasistatic approximation and the coupled-dipole method beyond the quasistatics. The latter approach is applicable if the interparticle gaps are sufficiently wide relative to the particle radii. Simulations are performed for two different particle size distribution functions (bimodal and Gaussian), varying the number of particles per aggregate, and different distribution functions of the interparticle gap width. The strong influence of the latter factor on the spectra is demonstrated and investigated in detail
Quantum Oscillations of Photocurrents in HgTe Quantum Wells with Dirac and Parabolic Dispersions
We report on the observation of magneto-oscillations of terahertz radiation
induced photocurrent in HgTe/HgCdTe quantum wells (QWs) of different widths,
which are characterized by a Dirac-like, inverted and normal parabolic band
structure. The photocurrent data are accompanied by measurements of
photoresistance (photoconductivity), radiation transmission, as well as
magneto-transport. We develop a microscopic model of a cyclotron-resonance
assisted photogalvanic effect, which describes main experimental findings. We
demonstrate that the quantum oscillations of the photocurrent are caused by the
crossing of Fermi level by Landau levels resulting in the oscillations of spin
polarization and electron mobilities in spin subbands. Theory explains a
photocurrent direction reversal with the variation of magnetic field observed
in experiment. We describe the photoconductivity oscillations related with the
thermal suppression of the Shubnikov-de Haas effect.Comment: 16 pages, 13 figure
Statistics of excitons in quantum dots and the resulting microcavity emission spectra
A theoretical investigation is presented of the statistics of excitons in
quantum dots (QDs) of different sizes. A formalism is developed to build the
exciton creation operator in a dot from the single exciton wavefunction and it
is shown how this operator evolves from purely fermionic, in case of a small
QD, to purely bosonic, in case of large QDs. Nonlinear optical emission spectra
of semiconductor microcavities containing single QDs are found to exhibit a
peculiar multiplet structure which reduces to Mollow triplet and Rabi doublet
in fermionic and bosonic limits, respectively.Comment: Extensively expanded revision, 14 pages, 12 figures, submitted to
Phys. Rev.
Degradation of structure and properties of rail surface layer at long-term operation
The microstructure evolution and properties variation of the surface layer of rail steel after passed 500 and 1000 million tons of gross weight (MTGW) have been investigated. The wear rate increases to 3 and 3.4 times after passed 500 and 1000 MTGW, respectively. The corresponding friction coefficient decreases by 1.4 and 1.1 times. The cementite plates were destroyed and formed the cementite particles of around 10-50 nm in size after passed 500 MTGW. The early stage dynamical recrystallization was observed after passed 1000 MTGW. The mechanisms for these have been suggested. The large number of bend extinction contours is revealed in the surface layer. The internal stress field is evaluated
- …