14 research outputs found

    Quadratic Poisson brackets and Drinfeld theory for associative algebras

    Full text link
    The paper is devoted to the Poisson brackets compatible with multiplication in associative algebras. These brackets are shown to be quadratic and their relations with the classical Yang--Baxter equation are revealed. The paper also contains a description of Poisson Lie structures on Lie groups whose Lie algebras are adjacent to an associative structure.Comment: 16 pages, latex, no figure

    Quadratic Poisson brackets and Drinfel'd theory for associative algebras

    Full text link
    Quadratic Poisson brackets on associative algebras are studied. Such a bracket compatible with the multiplication is related to a differentiation in tensor square of the underlying algebra. Jacobi identity means that this differentiation satisfies a classical Yang--Baxter equation. Corresponding Lie groups are canonically equipped with a Poisson Lie structure. A way to quantize such structures is suggested.Comment: latex, no figures

    Poisson homology of r-matrix type orbits I: example of computation

    Full text link
    In this paper we consider the Poisson algebraic structure associated with a classical rr-matrix, i.e. with a solution of the modified classical Yang--Baxter equation. In Section 1 we recall the concept and basic facts of the rr-matrix type Poisson orbits. Then we describe the rr-matrix Poisson pencil (i.e the pair of compatible Poisson structures) of rank 1 or CPnCP^n-type orbits of SL(n,C)SL(n,C). Here we calculate symplectic leaves and the integrable foliation associated with the pencil. We also describe the algebra of functions on CPnCP^n-type orbits. In Section 2 we calculate the Poisson homology of Drinfeld--Sklyanin Poisson brackets which belong to the rr-matrix Poisson family

    Physical phase space of lattice Yang-Mills theory and the moduli space of flat connections on a Riemann surface

    Get PDF
    It is shown that the physical phase space of \g-deformed Hamiltonian lattice Yang-Mills theory, which was recently proposed in refs.[1,2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with (LV+1)(L-V+1) handles and therefore with the physical phase space of the corresponding (2+1)(2+1)-dimensional Chern-Simons model, where LL and VV are correspondingly a total number of links and vertices of the lattice. The deformation parameter \g is identified with 2πk\frac {2\pi}{k} and kk is an integer entering the Chern-Simons action.Comment: 12 pages, latex, no figure

    Post-Lie Algebras, Factorization Theorems and Isospectral-Flows

    Full text link
    In these notes we review and further explore the Lie enveloping algebra of a post-Lie algebra. From a Hopf algebra point of view, one of the central results, which will be recalled in detail, is the existence of a second Hopf algebra structure. By comparing group-like elements in suitable completions of these two Hopf algebras, we derive a particular map which we dub post-Lie Magnus expansion. These results are then considered in the case of Semenov-Tian-Shansky's double Lie algebra, where a post-Lie algebra is defined in terms of solutions of modified classical Yang-Baxter equation. In this context, we prove a factorization theorem for group-like elements. An explicit exponential solution of the corresponding Lie bracket flow is presented, which is based on the aforementioned post-Lie Magnus expansion.Comment: 49 pages, no-figures, review articl

    Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions

    Full text link
    We give a concise summary of the impressive recent development unifying a number of different fundamental subjects. The quiver Nekrasov functions (generalized hypergeometric series) form a full basis for all conformal blocks of the Virasoro algebra and are sufficient to provide the same for some (special) conformal blocks of W-algebras. They can be described in terms of Seiberg-Witten theory, with the SW differential given by the 1-point resolvent in the DV phase of the quiver (discrete or conformal) matrix model (\beta-ensemble), dS = ydz + O(\epsilon^2) = \sum_p \epsilon^{2p} \rho_\beta^{(p|1)}(z), where \epsilon and \beta are related to the LNS parameters \epsilon_1 and \epsilon_2. This provides explicit formulas for conformal blocks in terms of analytically continued contour integrals and resolves the old puzzle of the free-field description of generic conformal blocks through the Dotsenko-Fateev integrals. Most important, this completes the GKMMM description of SW theory in terms of integrability theory with the help of exact BS integrals, and provides an extended manifestation of the basic principle which states that the effective actions are the tau-functions of integrable hierarchies.Comment: 14 page
    corecore