437 research outputs found

    Domain walls in gapped graphene

    Full text link
    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.Comment: 4 pgs. revte

    Spin Versus Charge Density Wave Order in Graphene-like Systems

    Full text link
    A variational technique is used to study sublattice symmetry breaking by strong on-site and nearest neighbor interactions in graphene. When interactions are strong enough to break sublattice symmetry, and with relative strengths characteristic of graphene, a charge density wave Mott insulator is favored over the spin density wave condensates. In the spin density wave condensate we find that introduction of a staggered on-site energy (quasiparticle mass) leads to a splitting of the fermi velocities and mass gaps of the quasiparticle spin states.Comment: 5 pages, 4 figures; some comments adde

    Charge Screening in the Finite Temperature Schwinger Model

    Get PDF
    We compute the effective action and correlators of the Polyakov loop operator in the Schwinger model at finite temperature and discuss the realization of the discrete symmetries that occur there. We show that, due to nonlocal effects of massless fermions in two spacetime dimensions, the discrete symmetry which governs the screening of charges is spontaneously broken even in an effective one-dimensional model, when the volume is infinite. In this limit, the thermal state of the Schwinger model screens an arbitrary external charge; consequently the model is in the deconfined phase, with the charge of the deconfined fermions completely screened. In a finite volume we show that the Schwinger model is always confining.Comment: 27 pages, latex, no figures. References addded and some misprints correcte

    Unitary matrix integrals in the framework of Generalized Kontsevich Model. I. Brezin-Gross-Witten Model

    Full text link
    We advocate a new approach to the study of unitary matrix models in external fields which emphasizes their relationship to Generalized Kontsevich Models (GKM) with non-polynomial potentials. For example, we show that the partition function of the Brezin-Gross-Witten Model (BGWM), which is defined as an integral over unitary N×NN\times N matrices, ∫[dU]eTr(J†U+JU†)\int [dU] e^{\rm{Tr}(J^\dagger U + JU^\dagger)}, can also be considered as a GKM with potential V(X)=1X{\cal V}(X) = \frac{1}{X}. Moreover, it can be interpreted as the generating functional for correlators in the Penner model. The strong and weak coupling phases of the BGWM are identified with the "character" (weak coupling) and "Kontsevich" (strong coupling) phases of the GKM, respectively. This sort of GKM deserves classification as p=−2p=-2 one (i.e. c=28c=28 or c=−2c=-2) when in the Kontsevich phase. This approach allows us to further identify the Harish-Chandra-Itzykson-Zuber (IZ) integral with a peculiar GKM, which arises in the study of c=1c=1 theory and, further, with a conventional 2-matrix model which is rewritten in Miwa coordinates. Inspired by the considered unitary matrix models, some further extensions of the GKM treatment which are inspired by the unitary matrix models which we have considered are also developed. In particular, as a by-product, a new simple method of fixing the Ward identities for matrix models in an external field is presented.Comment: FIAN/TD-16/93, ITEP-M6/93, UBC/S-93/93 (39 pages

    A Holographic Quantum Hall Ferromagnet

    Get PDF
    A detailed numerical study of a recent proposal for exotic states of the D3-probe D5 brane system with charge density and an external magnetic field is presented. The state has a large number of coincident D5 branes blowing up to a D7 brane in the presence of the worldvolume electric and magnetic fields which are necessary to construct the holographic state. Numerical solutions have shown that these states can compete with the the previously known chiral symmetry breaking and maximally symmetric phases of the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with integer quantized Hall conductivities. In the dual superconformal defect field theory, these solutions correspond to states which break the chiral and global flavor symmetries spontaneously. The region of the temperature-density plane where the D7 brane has lower energy than the other known D5 brane solutions is identified. A hypothesis for the structure of states with filling fraction and Hall conductivity greater than one is made and tested by numerical computation. A parallel with the quantum Hall ferromagnetism or magnetic catalysis phenomenon which is observed in graphene is drawn. As well as demonstrating that the phenomenon can exist in a strongly coupled system, this work makes a number of predictions of symmetry breaking patterns and phase transitions for such systems.Comment: 38 pages, 7 figures, references adde
    • …
    corecore