132 research outputs found

    Comment on `Glueball spectrum from a potential model'

    Full text link
    In a recent article, W.-S. Hou and G.-G. Wong [Phys. Rev. D {\bf 67}, 034003 (2003)] have investigated the spectrum of two-gluon glueballs below 3 GeV in a potential model with a dynamical gluon mass. We point out that, among the 18 states calculated by the authors, only three are physical. The other states either are spurious or possess a finite mass only due to an arbitrary restriction of the variational parameter.Comment: Comment on pape

    (2+1)(2+1)-dd Glueball Spectrum within a Constituent Picture

    Full text link
    The quantum numbers and mass hierarchy of the glueballs observed in (2+1)(2+1)-dimensional lattice QCD with gauge group SU(NcN_c) are shown to be in agreement with a constituent picture. The agreement is maintained when going from glueballs to gluelumps, and when the gauge group SO(2Nc2N_c) is taken instead of SU(NcN_c)

    Mass formula for strange baryons in large NcN_c QCD versus quark model

    Full text link
    A previous work establishing a connection between a quark model, with relativistic kinematics and a YY-confinement plus one gluon exchange, and the 1/Nc1/N_c expansion mass formula is extended to strange baryons. Both methods predict values for the SU(3)-breaking mass terms which are in good agreement with each other. Strange and nonstrange baryons are shown to exhibit Regge trajectories with an equal slope, but with an intercept depending on the strangeness. Both approaches agree on the value of the slope and of the intercept and on the existence of a single good quantum number labeling the baryons within a given Regge trajectory.Comment: 2 figure

    Observer with a constant proper acceleration

    Full text link
    Relying on the equivalence principle, a first approach of the general theory of relativity is presented using the spacetime metric of an observer with a constant proper acceleration. Within this non inertial frame, the equation of motion of a freely moving object is studied and the equation of motion of a second accelerated observer with the same proper acceleration is examined. A comparison of the metric of the accelerated observer with the metric due to a gravitational field is also performed.Comment: 5 figure

    String deformations induced by retardation effects

    Get PDF
    The rotating string model is an effective model of mesons, in which the quark and the antiquark are linked by a straight string. We previously developed a new framework to include the retardation effects in the rotating string model, but the string was still kept straight. We now go a step further and show that the retardation effects cause a small deviation of the string from the straight line. We first give general arguments constraining the string shape. Then, we find analytical and numerical solutions for the string deformation induced by retardation effects. We finally discuss the influence of the curved string on the energy spectrum of the model.Comment: 3 figure
    • …
    corecore