40 research outputs found

    Multifunctional Neural Interfaces for Closed-Loop Control of Neural Activity

    Get PDF
    Microfabrication and nanotechnology have significantly expanded the technological capabilities for monitoring and modulating neural activity with the goal of studying the nervous system and managing neurological disorders. This feature article initially provides a tutorial‐like review of the prominent technologies for enabling this two‐way communication with the nervous system via electrical, chemical, and optical means. Following this overview, the article discusses emerging high‐throughput methods for identifying device attributes that enhance the functionality of interfaces. The discussion then extends into opportunities and challenges in integrating different device functions within a small footprint with the goal of closed‐loop control of neural activity with high spatiotemporal resolution and reduced adverse tissue response. The article concludes with an outline of future directions in the development and applications of multifunctional neural interfaces

    Mammal-Like Organization of the Avian Midbrain Central Gray and a Reappraisal of the Intercollicular Nucleus

    Get PDF
    In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG

    sFtree

    No full text
    corecore