15 research outputs found

    Large-scale malaria survey in Cambodia: Novel insights on species distribution and risk factors

    Get PDF
    BACKGROUND: In Cambodia, estimates of the malaria burden rely on a public health information system that does not record cases occurring among remote populations, neither malaria cases treated in the private sector nor asymptomatic carriers. A global estimate of the current malaria situation and associated risk factors is, therefore, still lacking. METHODS: A large cross-sectional survey was carried out in three areas of multidrug resistant malaria in Cambodia, enrolling 11,652 individuals. Fever and splenomegaly were recorded. Malaria prevalence, parasite densities and spatial distribution of infection were determined to identify parasitological profiles and the associated risk factors useful for improving malaria control programmes in the country. RESULTS: Malaria prevalence was 3.0%, 7.0% and 12.3% in Sampovloun, Koh Kong and Preah Vihear areas. Prevalences and Plasmodium species were heterogeneously distributed, with higher Plasmodium vivax rates in areas of low transmission. Malaria-attributable fevers accounted only for 10–33% of malaria cases, and 23–33% of parasite carriers were febrile. Multivariate multilevel regression analysis identified adults and males, mostly involved in forest activities, as high risk groups in Sampovloun, with additional risks for children in forest-fringe villages in the other areas along with an increased risk with distance from health facilities. CONCLUSION: These observations point to a more complex malaria situation than suspected from official reports. A large asymptomatic reservoir was observed. The rates of P. vivax infections were higher than recorded in several areas. In remote areas, malaria prevalence was high. This indicates that additional health facilities should be implemented in areas at higher risk, such as remote rural and forested parts of the country, which are not adequately served by health services. Precise malaria risk mapping all over the country is needed to assess the extensive geographical heterogeneity of malaria endemicity and risk populations, so that current malaria control measures can be reinforced accordingly

    Molecular Surveillance for Multidrug-Resistant Plasmodium falciparum, Cambodia

    Get PDF
    We conducted surveillance for multidrug-resistant Plasmodium falciparum in Cambodia during 2004–2006 by assessing molecular changes in pfmdr1. The high prevalence of isolates with multiple pfmdr1 copies found in western Cambodia near the Thai border, where artesunate–mefloquine therapy failures occur, contrasts with isolates from eastern Cambodia, where this combination therapy remains highly effective

    PFMDR1 AND IN VIVO RESISTANCE TO ARTESUNATE-MEFLOQUINE IN FALCIPARUM MALARIA ON THE CAMBODIAN–THAI BORDER

    Get PDF
    Artemisinin combination therapies (ACTs) have recently been adopted as first-line therapy for Plasmodium falciparum infections in most malaria-endemic countries. In this study, we estimated the association between artesunate-mefloquine therapy failure and genetic changes in the putative transporter, pfmdr1. Blood samples were acquired from 80 patients enrolled in an 2004 in vivo efficacy study in Pailin, Cambodia, and genotyped for pfmdr1 copy number and haplotype. Having parasites with three or more copies of pfmdr1 before treatment was strongly associated with recrudescence (hazard ratio [HR] = 8.30; 95% CI: 2.60–26.43). This relationship was maintained when controlling for initial parasite density and hematocrit (HR = 7.91; 95% CI: 2.38–26.29). Artesunate-mefloquine treatment selected for increased pfmdr1 copy number, because isolates from recurrent episodes had higher copy numbers than the paired enrollment samples (Wilcoxon rank test, P = 0.040). pfmdr1 copy number should be evaluated further as a surveillance tool for artesunate-mefloquine resistance in Cambodia

    Misclassification of Drug Failures in Plasmodium falciparum Clinical Trials in Southeast Asia

    Get PDF
    Most trials of antimalarials occur in areas where reinfections are possible. For Plasmodium falciparum, reinfections are distinguished from recrudescences by PCR analysis of 3 polymorphic genes. However, the validity of this approach has never been rigorously tested. We tested for misclassification in 6 patients from clinical trials in Thailand and Cambodia who were classified as reinfected by the standard PCR protocol. Using heteroduplex tracking assays and direct DNA sequencing, we found that 5 of 6 (83%) patients were misclassified. Misclassification in this manner overestimates the efficacy of antimalarials and delays recognition of decreasing therapeutic efficacy, thus delaying potential policy changes

    Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to anti-malarial drugs hampers control efforts and increases the risk of morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>malaria was assessed in Chumkiri, Kampot Province, Cambodia.</p> <p>Methods</p> <p>One hundred fifty-one subjects with uncomplicated falciparum malaria received directly observed therapy with 12 mg/kg artesunate (over three days) and 25 mg/kg mefloquine, up to a maximum dose of 600 mg artesunate/1,000 mg mefloquine. One hundred nine subjects with uncomplicated vivax malaria received a total of 25 mg/kg chloroquine, up to a maximum dose of 1,500 mg, over three days. Subjects were followed for 42 days or until recurrent parasitaemia was observed. For <it>P. falciparum </it>infected subjects, PCR genotyping of <it>msp1</it>, <it>msp2</it>, and <it>glurp </it>was used to distinguish treatment failures from new infections. Treatment failure rates at days 28 and 42 were analyzed using both per protocol and Kaplan-Meier survival analysis. Real Time PCR was used to measure the copy number of the <it>pfmdr1 </it>gene and standard 48-hour isotopic hypoxanthine incorporation assays were used to measure IC<sub>50 </sub>for anti-malarial drugs.</p> <p>Results</p> <p>Among <it>P. falciparum </it>infected subjects, 47.0% were still parasitemic on day 2 and 11.3% on day 3. The PCR corrected treatment failure rates determined by survival analysis at 28 and 42 days were 13.1% and 18.8%, respectively. Treatment failure was associated with increased <it>pfmdr1 </it>copy number, higher initial parasitaemia, higher mefloquine IC<sub>50</sub>, and longer time to parasite clearance. One <it>P. falciparum </it>isolate, from a treatment failure, had markedly elevated IC<sub>50 </sub>for both mefloquine (130 nM) and artesunate (6.7 nM). Among <it>P. vivax </it>infected subjects, 42.1% suffered recurrent <it>P. vivax </it>parasitaemia. None acquired new <it>P. falciparum </it>infection.</p> <p>Conclusion</p> <p>The results suggest that artesunate-mefloquine combination therapy is beginning to fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC<sub>50 </sub>suggest that artesunate resistance may be emerging on a background of mefloquine resistance.</p

    Multiple Genetic Backgrounds of the Amplified Plasmodium falciparum Multidrug Resistance ( pfmdr 1) Gene and Selective Sweep of 184F Mutation in Cambodia

    Get PDF
    The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia

    Origin and Evolution of Sulfadoxine Resistant Plasmodium falciparum

    Get PDF
    The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions
    corecore