25 research outputs found

    Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia–reperfusion

    Get PDF
    During partial hepatectomy, ischemia–reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R

    Liver surgery in the presence of cirrhosis or steatosis: Is morbidity increased?

    Get PDF
    <p>Abstract</p> <p>Background data</p> <p>The prevalence of steatosis and hepatitis-related liver cirrhosis is dramatically increasing together worldwide. Cirrhosis and, more recently, steatosis are recognized as a clinically important feature that influences patient morbidity and mortality after hepatic resection when compared with patients with healthy liver.</p> <p>Objective</p> <p>To review present knowledge regarding how the presence of cirrhosis or steatosis can influence postoperative outcome after liver resection.</p> <p>Methods</p> <p>A critical review of the English literature was performed to provide data concerning postoperative outcome of patients presenting injured livers who required hepatectomy.</p> <p>Results</p> <p>In clinical studies, the presence of steatosis impaired postoperative outcome regardless the severity and quality of the hepatic fat. A great improvement in postoperative outcome has been achieved using modern and multidisciplinary preoperative workup in cirrhotic patients. Due to the lack of a proper classification for morbidity and a clear definition of hepatic failure in the literature, the comparison between different studies is very limited. Although, many surgical strategies have been developed to protect injured liver surgery, no one have gained worldwide acceptance.</p> <p>Conclusion</p> <p>Surgeons should take the presence of underlying injured livers into account when planning the extent and type of hepatic surgery. Preoperative and perioperative interventions should be considered to minimize the additional damage. Further randomized trials should focus on the evaluation of novel preoperative strategies to minimize risk in these patients. Each referral liver center should have the commitment to report all deaths related to postoperative hepatic failure and to use a common classification system for postoperative complications.</p

    Protocol requirements and diagnostic value of PET/MR imaging for liver metastasis detection

    Full text link
    PURPOSE: To compare the accuracy of PET/MR imaging with that of FDG PET/CT and to determine the MR sequences necessary for the detection of liver metastasis using a trimodality PET/CT/MR set-up. METHODS: Included in this single-centre IRB-approved study were 55 patients (22 women, age 61 ± 11 years) with suspected liver metastases from gastrointestinal cancer. Imaging using a trimodality PET/CT/MR set-up (time-of-flight PET/CT and 3-T whole-body MR imager) comprised PET, low-dose CT, contrast-enhanced (CE) CT of the abdomen, and MR with T1-W/T2-W, diffusion-weighted (DWI), and dynamic CE imaging. Two readers evaluated the following image sets for liver metastasis: PET/CT (set A), PET/CECT (B), PET/MR including T1-W/T2-W (C), T1-W/T2-W with either DWI (D) or CE imaging (E), and a combination (F). The accuracy of each image set was determined by receiver-operating characteristic analysis using image set B as the standard of reference. RESULTS: Of 120 liver lesions in 21/55 patients (38 %), 79 (66 %) were considered malignant, and 63/79 (80 %) showed abnormal FDG uptake. Accuracies were 0.937 (95 % CI 89.5 - 97.9 %) for image set A, 1.00 (95 % CI 99.9 - 100.0 %) for set C, 0.998 (95 % CI 99.4 - 100.0 %) for set D, 0.997 (95 % CI 99.3 - 100.0 %) for set E, and 0.995 (95 % CI 99.0 - 100.0 %) for set F. Differences were significant for image sets D - F (P < 0.05) when including lesions without abnormal FDG uptake. As shown by follow-up imaging after 50 - 177 days, the use of image sets D and both sets E and F led to the detection of metastases in one and three patients, respectively, and further metastases in the contralateral lobe in two patients negative on PET/CECT (P = 0.06). CONCLUSION: PET/MR imaging with T1-W/T2-W sequences results in similar diagnostic accuracy for the detection of liver metastases to PET/CECT. To significantly improve the characterization of liver lesions, we recommend the use of dynamic CE imaging sequences. PET/MR imaging has a diagnostic impact on clinical decision making

    Neue Aspekte zur Vorhersage des postoperativen Outcome bei Patienten nach Leberteilresektion

    No full text

    "State of the art" in liver resection and living donor liver transplantation: a worldwide survey of 100 liver centers

    Full text link
    BACKGROUND: New strategies have been developed to expand indications for liver surgery. The objective was to evaluate the current practice worldwide regarding critical liver mass and manipulation of the liver volume. METHODS: A survey was sent to 133 liver centers worldwide, which focused on (a) critical liver volume, (b) preoperative manipulation of the liver mass, and (c) use of liver biopsy and metabolic tests. RESULTS: The overall response rate to the survey was 75%. Half of the centers performed more than 100 resections per year; 86% had an associated liver transplant program. The minimal remnant liver volume for resection was 25% (15-40%) in cases of normal liver parenchyma and 50% (25-90%) in the presence of underlying cirrhosis. The minimal remnant liver volume for living donors was 40% (30-50%), whereas the accepted graft body weight ratio was 0.8 (0.6-1.2). Portal vein occlusion to manipulate the liver volume before resection was performed in 89% of the centers. CONCLUSIONS: Limits of liver volume and the current practice of liver manipulation before resection were comparable among different centers and continents. The minimal remnant liver volume in normal liver was 25%, and more than 80% of the centers performed portal vein occlusion

    Normothermic Machine Preservation of the Liver: State of the Art

    Get PDF
    Purpose of Review This review aims to introduce the concept of normothermic machine perfusion (NMP) and its role in liver transplantation. By discussing results from recent clinical studies and highlighting the potential opportunities provided by this technology, we aim to provide a greater insight into NMP and the role it can play to enhance liver transplantation. Recent Findings NMP has recently been shown to be both safe and feasible in liver transplantation and has also demonstrated its superiority to traditional cold storage in terms of early biochemical liver function. Through the ability to perform a viability assessment during preservation and extend preservation times, it is likely that an increase in organ utilisation will follow. NMP may facilitate the enhanced preservation with improved outcomes from donors after cardiac death and steatotic livers. Furthermore, it provides the exciting potential for liver-directed therapeutic interventions. Summary Evidence to date suggests that NMP facilitates the enhanced preservation of liver grafts with improved early post-transplant outcomes. The key role for this technology is to increase the number and quality of liver grafts available for transplantation and to reduce waiting list deaths
    corecore