4 research outputs found

    AI Enabled IoRT Framework for Rodent Activity Monitoring in a False Ceiling Environment

    No full text
    Routine rodent inspection is essential to curbing rat-borne diseases and infrastructure damages within the built environment. Rodents find false ceilings to be a perfect spot to seek shelter and construct their habitats. However, a manual false ceiling inspection for rodents is laborious and risky. This work presents an AI-enabled IoRT framework for rodent activity monitoring inside a false ceiling using an in-house developed robot called “Falcon”. The IoRT serves as a bridge between the users and the robots, through which seamless information sharing takes place. The shared images by the robots are inspected through a Faster RCNN ResNet 101 object detection algorithm, which is used to automatically detect the signs of rodent inside a false ceiling. The efficiency of the rodent activity detection algorithm was tested in a real-world false ceiling environment, and detection accuracy was evaluated with the standard performance metrics. The experimental results indicate that the algorithm detects rodent signs and 3D-printed rodents with a good confidence level

    sTetro-Deep Learning Powered Staircase Cleaning and Maintenance Reconfigurable Robot

    No full text
    Staircase cleaning is a crucial and time-consuming task for maintenance of multistory apartments and commercial buildings. There are many commercially available autonomous cleaning robots in the market for building maintenance, but few of them are designed for staircase cleaning. A key challenge for automating staircase cleaning robots involves the design of Environmental Perception Systems (EPS), which assist the robot in determining and navigating staircases. This system also recognizes obstacles and debris for safe navigation and efficient cleaning while climbing the staircase. This work proposes an operational framework leveraging the vision based EPS for the modular re-configurable maintenance robot, called sTetro. The proposed system uses an SSD MobileNet real-time object detection model to recognize staircases, obstacles and debris. Furthermore, the model filters out false detection of staircases by fusion of depth information through the use of a MobileNet and SVM. The system uses a contour detection algorithm to localize the first step of the staircase and depth clustering scheme for obstacle and debris localization. The framework has been deployed on the sTetro robot using the Jetson Nano hardware from NVIDIA and tested with multistory staircases. The experimental results show that the entire framework takes an average of 310 ms to run and achieves an accuracy of 94.32% for staircase recognition tasks and 93.81% accuracy for obstacle and debris detection tasks during real operation of the robot

    Drain Structural Defect Detection and Mapping Using AI-Enabled Reconfigurable Robot Raptor and IoRT Framework

    No full text
    Human visual inspection of drains is laborious, time-consuming, and prone to accidents. This work presents an AI-enabled robot-assisted remote drain inspection and mapping framework using our in-house developed reconfigurable robot Raptor. The four-layer IoRT serves as a bridge between the users and the robots, through which seamless information sharing takes place. The Faster RCNN ResNet50, Faster RCNN ResNet101, and Faster RCNN Inception-ResNet-v2 deep learning frameworks were trained using a transfer learning scheme with six typical concrete defect classes and deployed in an IoRT framework remote defect detection task. The efficiency of the trained CNN algorithm and drain inspection robot Raptor was evaluated through various real-time drain inspection field trials using the SLAM technique. The experimental results indicate that robot’s maneuverability was stable, and its mapping and localization were also accurate in different drain types. Finally, for effective drain maintenance, the SLAM-based defect map was generated by fusing defect detection results in the lidar-SLAM map

    Deep Learning Based Pavement Inspection Using Self-Reconfigurable Robot

    No full text
    The pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera. Semantic segmentation framework SegNet was adopted to segment the pavement region from other objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was adopted for the geotagging of the defects. The proposed system was implemented and tested with the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed technique identifies the pavement defects and litters or garbage detection with high accuracy. The experimental results on the crack and garbage detection are presented. It is found that the proposed technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or cleaning tasks
    corecore