23 research outputs found

    Gas migration in pre-compacted bentonite under elevated pore-water pressure conditions

    Get PDF
    Pre-compacted bentonite has long been proposed as a primary component of an engineered barrier system for the safe geological disposal of radioactive waste. Selection of properties such as the clay composition, compaction-state and clay-to-sand ratio varies in different disposal concepts. However, a sound understanding of the gas transport properties of the barrier material is often considered a necessary part of safety case development for a geological disposal facility. In this study, results are presented from two gas injection experiments conducted in Mx80 bentonite, under elevated pore-water pressure conditions. Test observations indicate that the conditions necessary for gas to enter this material are remarkably consistent, irrespective of the applied water pressure. As expected, an association is noted between the total stress experienced by the clay and the gas pressure at the moment of entry. Gas migration is interpreted as occurring by the formation and propagation of dilatant pathways within the bentonite. Local pore-pressure and stress measurements indicate that significant reworking of the clay can occur, resulting in meta-stable episodes of ‘pressure-cycling’, as gas seeks a stable escape pathway. These findings demonstrate the potential for ‘phases’ of pathway development and propagation within the buffer, resulting in successive migration episodes over the repository lifetime. Experiments also show the potential for gas entry into the buffer to occur as a result of declining pore-water pressure conditions. As such, the influence of significant deviations from hydrostatic conditions (for example, resulting from glacial loading) should not be neglected when considering gas interaction with the buffer over long timescales

    Unravelling the corrosion processes at steel/bentonite nterfaces in in situ tests

    Get PDF
    Microscopic and spectroscopic analyses were conducted on steel/bentonite interface samples removed from four in situ experiments that were carried out in three underground research laboratories at different temperatures and under different hydraulic and geochemical conditions. The results provide valuable information about the corrosion processes occurring in high-level radioactive waste repositories. Systematic patterns can be deduced from the results, irrespective of carbon steel grade, type of bentonite and its degree of compaction, geochemical environment or experimental setup. Thus, a clear dependence of the corrosion rates on temperature and exposure period, as well as on the availability of H2O and O2 provided by the surrounding bentonite buffer, is observed. Furthermore, Fe(II) ions released by corrosion interact with the structural Fe in the clay. Recent developments highlight the usefulness of reactive transport modelling in understanding the coupled corrosion and Fe–clay interaction processes

    Gel formation at the front of expanding calcium bentonites

    Get PDF
    The removal of potentially harmful radioactive waste from the anthroposphere will require disposal in geological repositories, the designs of which often favour the inclusion of a clay backfill or engineered barrier around the waste. Bentonite is often proposed as this engineered barrier and understanding its long-term performance and behaviour is vital in establishing the safety case for its usage. There are many different compositions of bentonite that exist and much research has focussed on the properties and behaviour of both sodium (Na) and calcium (Ca) bentonites. This study focusses on the results of a swelling test on Bulgarian Ca bentonite that showed an unusual gel formation at the expanding front, unobserved in previous tests of this type using the sodium bentonite MX80. The Bulgarian Ca bentonite was able to swell to completely fill an internal void space over the duration of the test, with a thin gel layer present on one end of the sample. The properties of the gel, along with the rest of the bulk sample, have been investigated using ESEM, EXDA and XRD analyses and the formation mechanism has been attributed to the migration of nanoparticulate smectite through a more silica-rich matrix of the bentonite substrate. The migration of smectite clay out of the bulk of the sample has important implications for bentonite erosion where this engineered barrier interacts with flowing groundwater in repository host rocks

    Influence of mental health service provision on the perceived quality of life among psychiatric outpatients: associations and mediating factors

    Get PDF
    ObjectiveTo investigate the relationship between perceived mental health service provision and quality of life (QoL) as perceived by patients in psychiatric outpatient care.MethodsA total of 373 adult patients registered at 15 psychiatric outpatient clinics in three regions in central and southern Sweden were included in the study. Survey data were collected using a questionnaire on mental health service provision, symptom severity, recovery, clinical diagnosis, sociodemographics (serving as independent variables) and QoL (serving as the dependent variable). Three aspects of mental health service provision were used: patients’ perceived quality of care, perceived staff-patient interaction, and patient reported psychiatric treatments. Structural equation modelling was used to model the relationship among the variables.ResultsVariables in mental health service provision showed few direct associations with patients’ perceived QoL. Instead, the associations of mental health service provision on QoL were mainly mediated through symptom severity and recovery. These relationships were retained after adjusting for sociodemographic variables and clinical diagnoses. The final model achieved excellent goodness of fit (χ2 = 49.502, p = 0.230, RMSEA = 0.020, CFI = 0.997 and a SRMR = 0.024).ConclusionThis study shows that mental health service provision is associated with patients’ perceived QoL; however, this association is mostly indirect and mediated by reduced symptom severity and increased recovery. This finding can help inform the design of future interventions to enhance service provision to improve patients’ QoL

    Modelling of the long-term evolution and performance of engineered barrier system

    Get PDF
    Components of the so-called “multiple-barrier system” from the waste form to the biosphere include a combination of waste containers, engineered barriers, and natural barriers. The Engineered Barrier System (EBS) is crucial for containment and isolation in a radioactive waste disposal system. The number, types, and assigned safety functions of the various engineered barriers depend on the chosen repository concept, the waste form, the radionuclides waste inventory, the selected host rock, and the hydrogeological and geochemical settings of the repository site, among others. EBS properties will evolve with time in response to the thermal, hydraulic, mechanical, radiological, and chemical gradients and interactions between the various constituents of the barriers and the host rock. Therefore, assessing how these properties evolve over long time frames is highly relevant for evaluating the performance of a repository system and safety function evaluations in a safety case. For this purpose, mechanistic numerical models are increasingly used. Such models provide an excellent way for integrating into a coherent framework a scientific understanding of coupled processes and their consequences on different properties of the materials in the EBS. Their development and validation are supported by R&D actions at the European level. For example, within the HORIZON 2020 project BEACON (Bentonite mechanical evolution), the development, test, and validation of numerical models against experimental results have been carried out in order to predict the evolution of the hydromechanical properties of bentonite during the saturation process. Also, in relation to the coupling with mechanics, WP16 MAGIC (chemo Mechanical AGIng of Cementitious materials) of the EURAD Joint Programming Initiative focuses on multi-scale chemo-mechanical modeling of cementitious-based materials that evolve under chemical perturbation. Integration of chemical evolution in models of varying complexity is a major issue tackled in the WP2 ACED (Assessment of Chemical Evolution of ILW and HLW Disposal cells) of EURAD. WP4 DONUT (Development and improvement of numerical methods and tools for modeling coupled processes) of EURAD aims at developing and improving numerical models and tools to integrate more complexity and coupling between processes. The combined progress of those projects at a pan-European level definitively improves the understanding of and the capabilities for assessing the long-term evolution of engineered barrier systems

    Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions

    No full text
    The estimated quantity of cement for construction and sealing purposes is around 9E5 kg in the planned Swedish KBS3 repository for nuclear waste. The highly alkaline cement pore fluid (pH > 12) may affect other components in the repository, and especially the bentonite buffer is of concern. In this study, we simulated possible interactions between cement and bentonite by contacting highly compacted bentonite with high molar hydroxide solutions in a series of laboratory experiments. Wyoming bentonite (MX-80) and purified homo-ionic Na- and Ca-montmorillonite were used for tests with 0.1, 0.3 and 1.0 M NaOH and saturated Ca(OH)2 solutions. Pressure cells with permeable filters were loaded with compacted discs of bentonite at the proposed buffer density (2000 kg/m(3) at full water saturation). A hydroxide solution was circulated on one side of the cell and an isotonic chloride solution on the other during a minimum of 45 days. Swelling pressure and solution pH were monitored during the tests and the change in the solution composition and bentonite mineralogy were determined after completed tests. No effect on swelling pressure was observed in tests with 0.1 M NaOH (pH 12.9) or saturated Ca(OH)2 solutions (pH 12.4) and the mineralogical/chemical changes of the clay were minimal. The bentonite swelling pressure was significantly reduced in the tests with 0.3 (pH 13.3) and 1.0 M (pH 13.8) NaOH solutions. The reduction seems to be due to an instant osmotic effect, and to a continuous dissolution of silica minerals, resulting in mass loss and, consequently, a decrease in density. At these high pH, the release of silica was dominating and the CEC of the clay increased by 20-25%. The structural formula of the smectite and X-ray diffraction tests for nonexpandability (Greene-Kelly test) provided strong evidence that the dissolution of montmorillonite proceeds incongruently through an initial step of beidellitization. The calculated rate of silica release from montmorillonite is 1.6E-9 g g(-1) clay s(-1) for 1.0 M and 5E-10 g g-1 clay s-1 for 0.3 M NaOH solutions. The Si release rate is, however, not a straightforward measure of the montmorillonite dissolution rate due to the non-stoichiometric dissolution. Upon contact between bentonite and NaCl solutions, ion-equilibrium is established between the external solution and the exchangeable cations of the clay. A similar initial pressure response on exposure of bentonite to NaOH solutions indicates that such equilibrium may establish also with an external NaOH solution. If so, the OH-concentration of the clay pore water will be lower than that of the external solution, which would explain that dissolution rates in our experiments with highly compacted bentonite are lower than those reported for batch experiments with hydroxide solutions of the same concentration. (C) 2006 Published by Elsevier Ltd

    Interaction of Corroding Iron with Eight Bentonites in the Alternative Buffer Materials Field Experiment (ABM2)

    No full text
    Bentonite, a common smectite-rich buffer material, is in direct contact with corroding steel in many high-level radioactive waste repository designs. The interaction of iron with the smectite-rich clay may affect its swelling and sealing properties by processes such as alteration, redox reactions and cementation. The chemical interactions were investigated by analysing the Fe/clay interfaces of eight bentonite blocks which had been exposed to temperatures up to 130 °C for five years in the ABM2 borehole at the Äspö Hard Rock Laboratory managed by the Swedish Nuclear Fuel and Waste Management Co (SKB). Eleven interface samples were characterised by high spatial resolution methods, including scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and ÎŒ-Raman spectroscopy as well as by “bulk” methods X-ray diffraction, X-ray fluorescence and 57Fe Mössbauer spectrometry. Corrosion induced an iron front of 5–20 mm into the bentonite, except for the high-Fe bentonite where no Fe increase was detected. This Fe front consisted mainly of ferric (oxyhydr)oxides in addition to the structural Fe in the smectite fraction which had been partially reduced by the interaction process. Fe(II) was also found to extend further into the clay, but its nature could not be identified. The consistent behaviour is explained by the redox evolution, which shifts from oxidising to reducing conditions during the experiment. No indication of smectite alteration was found
    corecore