523 research outputs found
Conductance measurement of spin-orbit coupling in the two-dimensional electron systems with in-plane magnetic field
We consider determination of spin-orbit (SO) coupling constants for the
two-dimensional electron gas from measurements of electric properties in
rotated in-plane magnetic field. %Due to the interplay Due to the SO coupling
the electron backscattering is accompanied by spin precession and spin mixing
of the incident and reflected electron waves. The competition of the external
and SO-related magnetic fields produces a characteristic conductance dependence
on the in-plane magnetic field value and orientation which, in turn, allows for
determination of the absolute value of the effective spin-orbit coupling
constant as well as the ratio of the Rashba and Dresselhaus SO contributions.Comment: 4 pages + supplementary material
Interference features in scanning gate conductance maps of quantum point contacts with disorder
We consider quantum point contacts (QPCs) defined within disordered
two-dimensional electron gases as studied by scanning gate microscopy. We
evaluate the conductance maps in the Landauer approach and wave function
picture of electron transport for samples with both low and high electron
mobility at finite temperatures. We discuss the spatial distribution of the
impurities in the context of the branched electron flow. We reproduce the
surprising temperature stability of the experimental interference fringes far
from the QPC. Next, we discuss -- previously undescribed -- funnel-shaped
features that accompany splitting of the branches visible in previous
experiments. Finally, we study elliptical interference fringes formed by an
interplay of scattering by the point-like impurities and by the scanning probe.
We discuss the details of the elliptical features as functions of the tip
voltage and the temperature, showing that the first interference fringe is very
robust against the thermal widening of the Fermi level. We present a simple
analytical model that allows for extraction of the impurity positions and the
electron gas depletion radius induced by the negatively charged tip of the
atomic force microscope, and apply this model on experimental scanning gate
images showing such elliptical fringes
Flow of evaporating, gravity-driven thin liquid films over topography
The effect of topography on the free surface and solvent concentration profiles of an evaporating thin film of liquid flowing down an inclined plane is considered. The liquid is assumed to be composed of a resin dissolved in a volatile solvent with the associated solvent concentration equation derived on the basis of the well-mixed approximation. The dynamics of the film is formulated as a lubrication approximation and the effect of a composition-dependent viscosity is included in the model. The resulting time-dependent, nonlinear, coupled set of governing equations is solved using a full approximation storage multigrid method.
The approach is first validated against a closed-form analytical solution for the case of a gravity-driven, evaporating thin film flowing down a flat substrate. Analysis of the results for a range of topography shapes reveal that although a full-width, spanwise topography such as a step-up or a step-down does not affect the composition of the film, the same is no longer true for the case of localized topography, such as a peak or a trough, for which clear nonuniformities of the solvent concentration profile can be observed in the wake of the topography
Recommended from our members
Debiasing training transfers to improve decision making in the field
The primary objection to debiasing training interventions is a lack of evidence that they transfer to improve decision making in field settings, where reminders of bias are absent. We gave graduate students in three professional programs (N = 290) a one-shot training intervention that reduces confirmation bias in laboratory experiments. Natural variance in the training schedule assigned participants to receive training before or after solving an unannounced business case modeled on the decision to launch the Space Shuttle Challenger. We used case solutions to surreptitiously measure their susceptibility to confirmation bias. Trained participants were 29% less likely to choose the inferior hypothesis-confirming solution than untrained participants. Analysis of case write-ups suggests that a reduction in confirmatory hypothesis testing accounts for their improved decision making in the case. The results provide promising evidence that debiasing training effects transfer to field settings and can improve consequential decisions in professional and private life
Repeat-Associated Non-AUG (RAN) Translation and Other Molecular Mechanisms in Fragile X Tremor Ataxia Syndrome
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5′UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA gain-of-function, whereby the mutant RNAs bind specific proteins and preclude their normal functions, and 2) repeat-associated non-AUG (RAN) translation, whereby translation through the CGG or CCG repeats leads to the production of toxic homopolypeptides, which in turn interfere with a variety of cellular functions. Here, we analyze the data generated to date on both of these potential molecular mechanisms and lay out a path forward for determining which factors drive FXTAS pathogenicity
Local Density of States in Mesoscopic Samples from Scanning Gate Microscopy
We study the relationship between the local density of states (LDOS) and the
conductance variation in scanning-gate-microscopy experiments on
mesoscopic structures as a charged tip scans above the sample surface. We
present an analytical model showing that in the linear-response regime the
conductance shift is proportional to the Hilbert transform of the
LDOS and hence a generalized Kramers-Kronig relation holds between LDOS and
. We analyze the physical conditions for the validity of this
relationship both for one-dimensional and two-dimensional systems when several
channels contribute to the transport. We focus on realistic Aharonov-Bohm rings
including a random distribution of impurities and analyze the LDOS-
correspondence by means of exact numerical simulations, when localized states
or semi-classical orbits characterize the wavefunction of the system.Comment: 8 pages, 8 figure
Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox
We present evidence for a counter-intuitive behavior of semiconductor
mesoscopic networks that is the analog of the Braess paradox encountered in
classical networks. A numerical simulation of quantum transport in a two-branch
mesoscopic network reveals that adding a third branch can paradoxically induce
transport inefficiency that manifests itself in a sizable conductance drop of
the network. A scanning-probe experiment using a biased tip to modulate the
transmission of one branch in the network reveals the occurrence of this
paradox by mapping the conductance variation as a function of the tip voltage
and position.Comment: 2nd version with minor stylistic corrections. To appear in Phys. Rev.
Lett.: Editorially approved for publication 6 January 201
- …