371 research outputs found

    Very small grains in the Milky Way and external galaxies

    Get PDF
    These studies of the infrared colors of reflection nebulae, HL HI clouds, HII regions and external galaxies have shown the following results. Different classes of objects locate in different regions on the R vs F sub v (60)/F sub v (100) diagram. This is determined both by differences in dust properties and by differences in the illuminating radiation field. For example, HL clouds and reflection nebulae almost have the same behavior since both are in the diffuse Interstellar Medium (ISM) and can be expected to have similar grain populations; the small difference in their infrared colors can be explained by the difference of the illuminating radiation field. On the other hand, the dramatic difference of R=vF sub v (12)/F sub v (far IR) between HII region and diffuse ISM may be due to the destruction of the Very Small Grain (VSG) component in the HII regions, although radiation transfer effects may play a part as well. The ratio R=vF sub v (12)/F sub v (far IR) is approximately constant in normal spiral galaxies. This implies that the mass ratio b=Mass (VSG)/Mass (dust) does not vary greatly from one galaxy to another

    H-Band Spectroscopic Classification of OB Stars

    Get PDF
    We present a new spectroscopic classification for OB stars based on H-band (1.5 micron to 1.8 micron) observations of a sample of stars with optical spectral types. Our initial sample of nine stars demonstrates that the combination of He I 1.7002 micron and H Brackett series absorption can be used to determine spectral types for stars between about O4 and B7 (to within about +/- 2 sub-types). We find that the Brackett series exhibits luminosity effects similar to the Balmer series for the B stars. This classification scheme will be useful in studies of optically obscured high mass star forming regions. In addition, we present spectra for the OB stars near 1.1 micron and 1.3 micron which may be of use in analyzing their atmospheres and winds.Comment: Accepted by AJ, 16 pages Latex (aastex4.0) including 4 figures and 2 tables. A complete PostScript copy is available at ftp://degobah.colorado.edu/pub/rblum/Hband

    The Nature of the Variable Galactic Center Source IRS16SW

    Full text link
    We report measurements of the light curve of the variable Galactic Center source IRS16SW. The light curve is not consistent with an eclipsing binary or any other obvious variable star. The source may be an example of a high mass variable predicted theoretically but not observed previously.Comment: 11 pages, 2 figures. Accepted by Ap

    The 15 - 20 Micron Spitzer Spectra of Interstellar Emission Features in NGC 7023

    Get PDF
    We present 15 - 20 micron long-slit spectra, from the Infrared Spectrograph (IRS) on Spitzer, of NGC 7023. We observe recently-discovered interstellar emission features, at 15.9, 16.4, 17.0, 17.4, 17.8, and 18.9 microns, throughout the reflection nebula. The 16.4 micron emission feature peaks near the photodissociation front northwest of the star, as do the aromatic emission features (AEFs) at 3.3, 6.2 and 11.3 microns. The 16.4 micron emission feature is thus likely related to the AEFs and radiates by non-equilibrium emission. The new 18.9 micron emission feature, by contrast, decreases monotonically with stellar distance. We consider candidate species for the 18.9 micron feature, including polycyclic aromatic hydrocarbons, fullerenes, and diamonds. We describe future laboratory and observational research needed to identify the 18.9 micron feature carrier

    The 15-20 μm Spitzer Spectra of Interstellar Emission Features in NGC 7023

    Get PDF
    We present 15-20 μm long-slit spectra of NGC 7023 from the Infrared Spectrograph (IRS) on Spitzer. We observe recently discovered interstellar emission features at 15.9, 16.4, 17.0, 17.4, 17.8, and 18.9 μm, throughout the reflection nebula. The 16.4 μm emission feature peaks near the photodissociation front northwest of the star, as the aromatic emission features (AEFs) at 3.3, 6.2, and 11.3 μm do. The 16.4 μm emission feature is thus likely related to the AEFs and radiates by nonequilibrium emission. The new 18.9 μm emission feature, by contrast, decreases monotonically with stellar distance. We consider candidate species for the 18.9 μm feature, including polycyclic aromatic hydrocarbons, fullerenes, and diamonds. We describe future laboratory and observational research needed to identify the 18.9 μm feature carrier

    Abundance Patterns in Stars in the Bulge and Galactic Center

    Full text link
    We discuss oxygen and iron abundance patterns in K and M red-giant members of the Galactic bulge and in the young and massive M-type stars inhabiting the very center of the Milky Way. The abundance results from the different bulge studies in the literature, both in the optical and the infrared, indicate that the [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Based on these elevated values of [O/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a rapid chemical enrichment with perhaps a top-heavy initial mass function. The Galactic Center stars reveal a nearly uniform and slightly elevated (relative to solar) iron abundance for a studied sample which is composed of 10 red giants and supergiants. Perhaps of more significance is the fact that the young Galactic Center M-type stars show abundance patterns that are reminiscent of those observed for the bulge population and contain enhanced abundance ratios of alpha-elements relative to either the Sun or Milky Way disk at near-solar metallicities.Comment: requires iaus.cls; to appear in Formation and Evolution of Galaxy Bulges, Proceedings IAU Symposium No. 245, 2007, M. Bureau et al. eds., in pres

    On the Excitation and Formation of Circumstellar Fullerenes

    Get PDF
    We compare and analyze the Spitzer mid-infrared spectrum of three fullerene-rich planetary nebulae in the Milky Way and the Magellanic Clouds; Tc1, SMP SMC16, and SMP LMC56. The three planetary nebulae share many spectroscopic similarities. The strongest circumstellar emission bands correspond to the infrared active vibrational modes of the fullerene species C60 and little or no emission is present from Polycyclic Aromatic Hydrocarbons (PAHs). The strength of the fullerene bands in the three planetary nebulae is very similar, while the ratio of the [NeIII]15.5um/[NeII]12.8um fine structure lines, an indicator of the strength of the radiation field, is markedly different. This raises questions about their excitation mechanism and we compare the fullerene emission to fluorescent and thermal models. In addition, the spectra show other interesting and common features, most notably in the 6-9um region, where a broad plateau with substructure dominates the emission. These features have previously been associated with mixtures of aromatic/aliphatic hydrocarbon solids. We hypothesize on the origin of this band, which is likely related to the fullerene formation mechanism, and compare it with modeled Hydrogenated Amorphous Carbon that present emission in this region.Comment: 13 pages, 2 tables, 7 figures, Accepted for publication in Ap

    Chemical Abundances of Luminous Cool Stars in the Galactic Center from High-Resolution Infrared Spectroscopy

    Get PDF
    We present chemical abundances in a sample of luminous cool stars located within 30 pc of the Galactic center. Abundances of carbon, nitrogen, oxygen, calcium, and iron were derived from high-resolution infrared spectra in the H and K bands. The abundance results indicate that both [O/Fe] and [Ca/Fe] are enhanced, respectively, by averages of +0.2 and +0.3 dex, relative to either the Sun or the Milky Way disk at near-solar Fe abundances. The Galactic center stars show a nearly uniform and nearly solar iron abundance. The mean value of A(Fe) = 7.59 ± 0.06 agrees well with previous work. The total range in Fe abundance among Galactic center stars, 0.16 dex, is significantly narrower than the iron abundance distributions found in the literature for the older bulge population. Our snapshot of the current-day Fe abundance within 30 pc of the Galactic center samples stars with an age less than 1 Gyr; a larger sample in time (or space) may find a wider spread in abundances
    corecore