60 research outputs found

    Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms

    Get PDF
    It has recently been discovered that the optical analog of a gradient echo, in an optically thick material, could form the basis of an optical memory that is both completely efficient and noise-free. Here we present analytical calculations showing that this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particular, we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even in the optically thin case

    Photon echo without a free induction decay in a double-Lambda system

    Full text link
    We have characterized a novel photon-echo pulse sequence for a double-Λ\Lambda type energy level system where the input and rephasing transitions are different to the applied π\pi-pulses. We show that despite having imperfect π\pi-pulses (associated with large coherent emission due to free induction decay), the noise added is only 0.019±\pm0.001 relative to the shot noise in the spectral mode of the echo. Using this echo pulse sequence in the `rephased amplified spontaneous emission' (RASE) scheme \cite{Ledingham2010} will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr:YSO crystal

    Technique for frequency selective, sub-diffraction limited imaging of rare-earth ions in bulk crystals

    Get PDF
    We propose and demonstrate the principle of a sub-diffraction-limited optical imaging technique for rare-earth ion crystals that preserves the ions’ homogeneous line width. Our method uses a combination of applied electric field gradients and optical pumping to create a resonant nanoscopic volume within an otherwise non-resonant macroscopic crystal. We present the concept of the Stark activation technique and perform a demonstration in Pr³⁺: Y₂SiO₅ in which we create a 10 μm-thick absorption feature in a 1 mm thick crystal. By modeling the system we show that it is possible to increase the resolution of the technique to the 5 nm range for single Pr³⁺ ions. We also discuss the physical properties that will fundamentally limit the resolution of Stark activation. Because the proposed technique simultaneously achieves high spatial and high spectral resolution it is an enabling protocol to realize technology based on single rare-earth ions and harness short-range interactions in ensembles.This work was supported by the Australian Research Council Center of Excellence for Quantum Computation and Communication Technology (CE110001027). M.J.S. was supported by an Australian Research Council Future Fellowship (FT110100919)

    The observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide

    Full text link
    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth and spin state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+:Y2SiO5 crystal allows the 3H4 - 1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2 GHz inhomogeneous linewidth, the optical coherence time of 70 +- 5 us, and the spin state lifetime of 9.8 +- 0.3 s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated and high performance rare-earth-ion quantum systems based on a waveguide platform.Comment: 5 pages, 5 figure

    Non-classical photon streams using rephased amplified spontaneous emission

    Full text link
    We present a fully quantum mechanical treatment of optically rephased photon echoes. These echoes exhibit noise due to amplified spontaneous emission, however this noise can be seen as a consequence of the entanglement between the atoms and the output light. With a rephasing pulse one can get an "echo" of the amplified spontaneous emission, leading to light with nonclassical correlations at points separated in time, which is of interest in the context of building wide bandwidth quantum repeaters. We also suggest a wideband version of DLCZ protocol based on the same ideas.Comment: 5 pages, 4 figures. Added section

    Single photon production by rephased amplified spontaneous emission

    Get PDF
    The production of single photons using rephased amplified spontaneous emission is examined. This process produces single photons on demand with high efficiency by detecting the spontaneous emission from an atomic ensemble, then applying a population-inverting pulse to rephase the ensemble and produce a photon echo of the spontaneous emission events. The theoretical limits on the efficiency of the production are determined for several variants of the scheme. For an ensemble of uniform optical density, generating the initial spontaneous emission and its echo using transitions of different strengths is shown to produce single photons at 70% efficiency, limited by reabsorption. Tailoring the spatial and spectral density of the atomic ensemble is then shown to prevent reabsorption of the rephased photon, resulting in emission efficiency near unity

    Optical addressing of an individual erbium ion in silicon

    Full text link
    The detection of electron spins associated with single defects in solids is a critical operation for a range of quantum information and measurement applications currently under development. To date, it has only been accomplished for two centres in crystalline solids: phosphorus in silicon using electrical readout based on a single electron transistor (SET) and nitrogen-vacancy centres in diamond using optical readout. A spin readout fidelity of about 90% has been demonstrated with both electrical readout and optical readout, however, the thermal limitations of the electrical readout and the poor photon collection efficiency of the optical readout hinder achieving the high fidelity required for quantum information applications. Here we demonstrate a hybrid approach using optical excitation to change the charge state of the defect centre in a silicon-based SET, conditional on its spin state, and then detecting this change electrically. The optical frequency addressing in high spectral resolution conquers the thermal broadening limitation of the previous electrical readout and charge sensing avoids the difficulties of efficient photon collection. This is done with erbium in silicon and has the potential to enable new architectures for quantum information processing devices and to dramatically increase the range of defect centres that can be exploited. Further, the efficient electrical detection of the optical excitation of single sites in silicon is a major step in developing an interconnect between silicon and optical based quantum computing technologies.Comment: Corrected the third affiliation. Corrected one cross-reference of "Fig. 3b" to "Fig. 3c". Corrected the caption of Fig. 3a by changing (+-)1 to

    Optimising the Efficiency of a Quantum Memory based on Rephased Amplified Spontaneous Emission

    Full text link
    We studied the recall efficiency as a function of optical depth of rephased amplified spontaneous emission (RASE), a protocol for generating entangled light. The experiments were performed on the 3 ⁣H4^{3}\! H_{4} \rightarrow 1 ⁣D2^{1}\! D_{2} transition in the rare-earth doped crystal Pr3+^{3+}:Y2_{2}SiO5_{5}, using a four-level echo sequence between four hyperfine levels to rephase the emission. Rephased emission was observed for optical depths in the range of αL\alpha L = 0.8 to 2.0 with a maximum rephasing efficiency of 14 % observed while incorporating spin storage. This efficiency is a significant improvement over the previously reported non-classical result but is well short of the predicted efficiency. We discuss the possible mechanisms limiting the protocol's performance, and suggest ways to overcome these limits.Comment: 5 pages, 5 figure
    corecore