197 research outputs found

    Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate γ-secretase function in generating Alzheimer-causing Aβ peptides

    Get PDF
    γ-Secretase is responsible for the proteolysis of amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides, which are centrally implicated in the pathogenesis of Alzheimer’s disease (AD). The biochemical mechanism of how processing by γ-secretase is regulated, especially as regards the interaction between enzyme and substrate, remains largely unknown. Here, mutagenesis reveals that the hydrophilic loop-1 (HL-1) of presenilin-1 (PS1) is critical for both γ-secretase step-wise cleavages (processivity) and its allosteric modulation by heterocyclic γ-modulatory compounds. Systematic mutagenesis of HL-1, including all of its familial AD mutations and additional engineered variants, and quantification of the resultant Aβ products show that HL-1 is necessary for proper sequential γ-secretase processivity. We identify Y106, L113, and Y115 in HL-1 as key targets for heterocyclic γ-secretase modulators (GSMs) to stimulate processing of pathogenic Aβ peptides. Further, we confirm that the GxxxG domain in the APP transmembrane region functions as a critical substrate motif for γ-secretase processivity: a G29A substitution in APP-C99 mimics the beneficial effects of GSMs. Together, these findings provide a molecular basis for the structural regulation of γ-processivity by enzyme and substrate, facilitating the rational design of new GSMs that lower AD-initiating amyloidogenic Aβ peptides

    Pen-2 Is Essential for γ-Secretase Complex Stability and Trafficking but Partially Dispensable for Endoproteolysis

    Get PDF
    The 19-transmembrane γ-secretase complex generates the amyloid β-peptide of Alzheimer’s disease by intramembrane proteolysis of the β-amyloid precursor protein. This complex is comprised of presenilin, Aph1, nicastrin, and Pen-2. The exact function and mechanism of the highly conserved Pen-2 subunit remain poorly understood. Using systematic mutagenesis, we confirm and extend our understanding of which key regions and specific residues play roles in various aspects of γ-secretase function, including maturation, localization, and activity, but not processivity. In general, mutations (1) within the first half of transmembrane domain (TMD) 1 of Pen-2 decreased PS1 endoproteolysis and γ-secretase proteolytic activity, (2) within the second half of TMD1 increased proteolytic activity, (3) within the cytosolic loop region decreased proteolytic activity, (4) within TMD2 decreased PS1 endoproteolysis, (5) within the first half of TMD2 decreased proteolytic activity, and (6) within C-terminal residues decreased proteolytic activity. Specific mutational effects included N33A in TMD1 causing an increase in γ-secretase complexes at the cell surface and a modest decrease in stability and the previously unreported I53A mutation in the loop region reducing stability 10-fold and proteolytic activity by half. In addition, we confirm that minor PS1 endoproteolysis can occur in the complete absence of Pen-2. Together, these data suggest that rather than solely being a catalyst for γ-secretase endoproteolysis, Pen-2 may also stabilize the complex prior to PS1 endoproteolysis, allowing time for full assembly and proper trafficking

    Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously we reported 1 μM synthetic human amyloid beta<sub>1-42 </sub>oligomers induced cofilin dephosphorylation (activation) and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus.</p> <p>Results</p> <p>Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t) induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ<sub>1-42</sub>, the latter lacking tyrosine, acquires a marked increase (620 fold for EC<sub>50</sub>) in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state), lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ<sub>1-42 </sub>dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation.</p> <p>Conclusions</p> <p>Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.</p

    Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death

    Get PDF
    AbstractConverging evidence suggests that the accumulation of cerebral amyloid β-protein (Aβ) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Aβ thus represents a novel therapeutic approach to lowering steady-state Aβ levels, but the consequences of sustained upregulation in vivo have not been studied. Here we show that transgenic overexpression of insulin-degrading enzyme (IDE) or neprilysin (NEP) in neurons significantly reduces brain Aβ levels, retards or completely prevents amyloid plaque formation and its associated cytopathology, and rescues the premature lethality present in amyloid precursor protein (APP) transgenic mice. Our findings demonstrate that chronic upregulation of Aβ-degrading proteases represents an efficacious therapeutic approach to combating Alzheimer-type pathology in vivo
    corecore