7 research outputs found
Large Scale Structure of the Universe
Galaxies are not uniformly distributed in space. On large scales the Universe
displays coherent structure, with galaxies residing in groups and clusters on
scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of
galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space,
known as voids, contain very few galaxies and span the volume in between these
structures. This observed large scale structure depends both on cosmological
parameters and on the formation and evolution of galaxies. Using the two-point
correlation function, one can trace the dependence of large scale structure on
galaxy properties such as luminosity, color, stellar mass, and track its
evolution with redshift. Comparison of the observed galaxy clustering
signatures with dark matter simulations allows one to model and understand the
clustering of galaxies and their formation and evolution within their parent
dark matter halos. Clustering measurements can determine the parent dark matter
halo mass of a given galaxy population, connect observed galaxy populations at
different epochs, and constrain cosmological parameters and galaxy evolution
models. This chapter describes the methods used to measure the two-point
correlation function in both redshift and real space, presents the current
results of how the clustering amplitude depends on various galaxy properties,
and discusses quantitative measurements of the structures of voids and
filaments. The interpretation of these results with current theoretical models
is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets,
Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume
editor W. C. Keel, v2 includes additional references, updated to match
published versio
Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo
GLOBAL FIELD DYNAMICS AND COSMOLOGICAL STRUCTURE FORMATION
Abstract. In this contribution we discuss gravitational effects of global scalar fields and, especially, of global topological defects. We first give an introduction to the dynamics of global fields and the formation of defects. Next we investigate the induced gravitational fields, first in a flat background and then in the expanding universe. In flat space, we explicitly calculate the gravitational fields of exact global monopole and global texture solutions and discuss the motion of photons and massive particles in these geometries. We also show that slowly moving particles and the energy of photons are not affected in static scalar field configurations with vanishing potential energy. In expanding space, we explore the possibility that global topological defects from a phase transition in the very early universe may have seeded inhomogeneities in the energy distribution which yielded the observed large scale structure in the Universe, the sheets of galaxies, clusters, voids.... We outline numerical simulations which have been performed to tackle this problem and briefly discuss their results.
