1,471 research outputs found
Applying quantitative semantics to higher-order quantum computing
Finding a denotational semantics for higher order quantum computation is a
long-standing problem in the semantics of quantum programming languages. Most
past approaches to this problem fell short in one way or another, either
limiting the language to an unusably small finitary fragment, or giving up
important features of quantum physics such as entanglement. In this paper, we
propose a denotational semantics for a quantum lambda calculus with recursion
and an infinite data type, using constructions from quantitative semantics of
linear logic
Atlas of common complications associated with R.G.P. and S.C.L wear
Contact lenses are a popular and frequently used mode of correcting refractive error and are occasionally used to treat diseased and degenerative processes. As both Rigid Gas Permeable (RGP) and Soft Contact Lenses (SCL) lie directly on the cornea buffered only by the tear layer. it is the cornea that shows the first signs of adverse effects of contact lens wear. Contact lenses can affect the cornea both mechanically, due to their physical presence on the eye, as well as indirectly through interference with the normal physiology of the cornea. As the mode of contact lens wear increases through new materials and designs, so too do the needs of the patient. The population trend is moving toward the older patient and this group of patients are less tolerant to mild corneal hypoxia and mechanical trauma than the younger population. At the same time, as their corneal topography and physiology is more fragile, there is an increased need for thicker contact lenses (e.g. bifocal lenses). With this situation, the early detection of contact lens complications is critical in order to preserve a healthy visual system. A good patient evaluation assessing the ocular health. combined with strong patient motivation is the first step in successful contact lens wear. Secondly. a thorough knowledge of materials, lens design, fits and care solutions also contribute to successful long term contact lens wear. Once a patient has been fitted with their lenses, the recognition of early contact lens complications is essential. The earlier the identification and correct treatment is undertaken, the better the prognosis for continued success in contact lens wear. Optometry students and new practitioners (who may have had little experience with contact lens complications). often find it difficult to correctly identify the problems and implement the correct treatment. This thesis was developed to provide a pictorial reference guide with an accompanying written identification and treatment guideline for eight of the most common contact lens complications. The early identification. and implementation of appropriate treatment will usually stop the progression of the corneal/lid problem. preserving and/ or re-establishing a healthy ocular system. while still maintaining good visual acuity. Successful treatment of contact lens associated ocular problems can lead to continued healthy contact lens wear by the patient
Environment and classical channels in categorical quantum mechanics
We present a both simple and comprehensive graphical calculus for quantum
computing. In particular, we axiomatize the notion of an environment, which
together with the earlier introduced axiomatic notion of classical structure
enables us to define classical channels, quantum measurements and classical
control. If we moreover adjoin the earlier introduced axiomatic notion of
complementarity, we obtain sufficient structural power for constructive
representation and correctness derivation of typical quantum informatic
protocols.Comment: 26 pages, many pics; this third version has substantially more
explanations than previous ones; Journal reference is of short 14 page
version; Proceedings of the 19th EACSL Annual Conference on Computer Science
Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010
Theory of Chiral Order in Random Copolymers
Recent experiments have found that polyisocyanates composed of a mixture of
opposite enantiomers follow a chiral ``majority rule:'' the chiral order of the
copolymer, measured by optical activity, is dominated by whichever enantiomer
is in the majority. We explain this majority rule theoretically by mapping the
random copolymer onto the random-field Ising model. Using this model, we
predict the chiral order as a function of enantiomer concentration, in
quantitative agreement with the experiments, and show how the sharpness of the
majority-rule curve can be controlled.Comment: 13 pages, including 4 postscript figures, uses REVTeX 3.0 and
epsf.st
The Measurement Calculus
Measurement-based quantum computation has emerged from the physics community
as a new approach to quantum computation where the notion of measurement is the
main driving force of computation. This is in contrast with the more
traditional circuit model which is based on unitary operations. Among
measurement-based quantum computation methods, the recently introduced one-way
quantum computer stands out as fundamental.
We develop a rigorous mathematical model underlying the one-way quantum
computer and present a concrete syntax and operational semantics for programs,
which we call patterns, and an algebra of these patterns derived from a
denotational semantics. More importantly, we present a calculus for reasoning
locally and compositionally about these patterns.
We present a rewrite theory and prove a general standardization theorem which
allows all patterns to be put in a semantically equivalent standard form.
Standardization has far-reaching consequences: a new physical architecture
based on performing all the entanglement in the beginning, parallelization by
exposing the dependency structure of measurements and expressiveness theorems.
Furthermore we formalize several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. This allows us to transfer all the theory
we develop for the one-way model to these models. This shows that the framework
we have developed has a general impact on measurement-based computation and is
not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new
version also include formalization of several other measurement-based models:
Teleportation, Phase and Pauli models and present compositional embeddings of
them into and from the one-way model. To appear in Journal of AC
Order and Frustration in Chiral Liquid Crystals
This paper reviews the complex ordered structures induced by chirality in
liquid crystals. In general, chirality favors a twist in the orientation of
liquid-crystal molecules. In some cases, as in the cholesteric phase, this
favored twist can be achieved without any defects. More often, the favored
twist competes with applied electric or magnetic fields or with geometric
constraints, leading to frustration. In response to this frustration, the
system develops ordered structures with periodic arrays of defects. The
simplest example of such a structure is the lattice of domains and domain walls
in a cholesteric phase under a magnetic field. More complex examples include
defect structures formed in two-dimensional films of chiral liquid crystals.
The same considerations of chirality and defects apply to three-dimensional
structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure
Deep Reinforcement Learning for Join Order Enumeration
Join order selection plays a significant role in query performance. However,
modern query optimizers typically employ static join enumeration algorithms
that do not receive any feedback about the quality of the resulting plan.
Hence, optimizers often repeatedly choose the same bad plan, as they do not
have a mechanism for "learning from their mistakes". In this paper, we argue
that existing deep reinforcement learning techniques can be applied to address
this challenge. These techniques, powered by artificial neural networks, can
automatically improve decision making by incorporating feedback from their
successes and failures. Towards this goal, we present ReJOIN, a
proof-of-concept join enumerator, and present preliminary results indicating
that ReJOIN can match or outperform the PostgreSQL optimizer in terms of plan
quality and join enumeration efficiency
An extremal model for amorphous media plasticity
An extremal model for the plasticity of amorphous materials is studied in a
simple two-dimensional anti-plane geometry. The steady-state is analyzed
through numerical simulations. Long-range spatial and temporal correlations in
local slip events are shown to develop, leading to non-trivial and highly
anisotropic scaling laws. In particular, the plastic strain is shown to
statistically concentrate over a region which tends to align perpendicular to
the displacement gradient. By construction, the model can be seen as giving
rise to a depinning transition, the threshold of which (i.e. the macroscopic
yield stress) also reveal scaling properties reflecting the localization of the
activity.Comment: 4 pages, 5 figure
Thurston's pullback map on the augmented Teichm\"uller space and applications
Let be a postcritically finite branched self-cover of a 2-dimensional
topological sphere. Such a map induces an analytic self-map of a
finite-dimensional Teichm\"uller space. We prove that this map extends
continuously to the augmented Teichm\"uller space and give an explicit
construction for this extension. This allows us to characterize the dynamics of
Thurston's pullback map near invariant strata of the boundary of the augmented
Teichm\"uller space. The resulting classification of invariant boundary strata
is used to prove a conjecture by Pilgrim and to infer further properties of
Thurston's pullback map. Our approach also yields new proofs of Thurston's
theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page
- …