40 research outputs found
Pattern recognition receptors in fungal immunity
Over the last decade, invasive fungal infections have emerged as a growing threat to human health worldwide and novel treatment strategies are urgently needed. In this context, investigations into host-pathogen interactions represent an important and promising field of research. Antigen presenting cells such as macrophages and dendritic cells are strategically located at the frontline of defence against potential invaders. Importantly, these cells express germline encoded pattern recognition receptors (PRRs), which sense conserved entities from pathogens and orchestrate innate immune responses. Herein, we review the latest findings regarding the biology and functions of the different classes of PRRs involved in pathogenic fungal recognition. We also discuss recent literature on PRR collaboration/crosstalk and the mechanisms involved in inhibiting/regulating PRR signalling. Finally, we discuss how the accumulated knowledge on PRR biology, especially Dectin-1, has been used for the design of new immunotherapies against fungal infections
Defective antifungal immunity in patients with COVID-19
The COVID-19 pandemic has placed a huge strain on global healthcare and been a significant cause of increased morbidity and mortality, particularly in atrisk populations. This disease attacks the respiratory systems and causes significant immune dysregulation in affected patients creating a perfect opportunity for the development of invasive fungal disease (IFD). COVID-19 infection can instill a significant, poorly regulated pro-inflammatory response. Clinically induced immunosuppression or pro-inflammatory damage to mucosa facilitate the development of IFD and Aspergillus, Mucorales, and Candida infections have been regularly reported throughout the COVID-19 pandemic. Corticosteroids and immune modulators are used in the treatment of COVID-19. Corticosteroid use is also a risk factor for IFD, but not the only reason for IFD in COVID -19 patients. Specific dysregulation of the immune system through functional exhaustion of Natural killer (NK) cells and T cells has been observed in COVID-19 through the expression of the exhaustion markers NK-G2A and PD-1. Reduced fungicidal activity of neutrophils from COVID-19 patients indicates that immune dysfunction/imbalance are important risk factors for IFD. The COVID-19 pandemic has significantly increased the at risk population for IFD. Even if the incidence of IFD is relatively low, the size of this new at-risk population will result in a substantial increase in the overall, annual number of IFD cases. It is important to understand how and why certain patients with COVID-19 developed increased susceptibility to IFD, as this will improve our understanding of risk of IFD in the face of future pandemics but also in a clinical era of increased clinical immuno-suppression/modulation
Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 in vitro
The role of macrophage-inducible C-type lectin (Mincle) in anti-inflammatory responses has not yet been fully characterized. Herein, we show that engagement of Mincle by trehalose-dimycolate or mycobacteria promotes IL-10 production in macrophages, which causes down-regulation of IL-12p40 secretion. Thus, Mincle mediates both pro- as well as anti-inflammatory responses
Dependence on Mincle and Dectin-2 Varies With Multiple Candida Species During Systemic Infection
FUNDING SO was supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant No. 099953/Z/12/Z) and by a Wellcome Trust Cross-Disciplinary Award. NG acknowledges Wellcome Trust support of a Senior Investigator (101873/Z/13/Z), Collaborative (200208/A/15/Z) and Strategic Awards (097377/Z11/Z) and the MRC Centre for Medical Mycology (MR/N006364/2). PT was funded by a Wellcome Trust Investigator Award (107964/Z/15/Z) and the UK Dementia Research Institute. ACKNOWLEDGMENTS We wish to acknowledge the NIH-sponsored Mutant Mouse Regional Resource Center (MMRRC) National System as the source of genetically altered mice (C57BL/6-Clec4et m1. 1C fg /Mmucd 031936-UCD) for use in this study. The mice were produced and deposited to the MMRRC by the Consortium for Functional Glycomics supported by the National Institute of General Medical Sciences (GM62116). We also thank the Microscopy and Histology Core Facility at the University of Aberdeen for expert assistance with TEM.Peer reviewedPublisher PD
Orally administered β-glucan attenuates the Th2 response in a model of airway hypersensitivity
β-Glucan is a polysaccharide that can be extracted from fungal cell walls. Wellmune WGP®, a preparation of β-1,3/1,6-glucans, is a dietary supplement that has immunomodulating properties. Here we investigated the effect WGP had on a mouse model of asthma. OVA-induced asthma in mice is characterized by infiltration of eosinophils into the lung, production of Th2 cytokines and IgE. Daily oral administration of WGP (400 µg) significantly reduced the influx of eosinophils into the lungs of OVA-challenged mice compared to control mice. In addition, WGP inhibited pulmonary production of Th2 cytokines (IL-4, IL-5, IL-13), however serum IgE levels were unaffected by WGP treatment. These data indicate that WGP could potentially be useful as an oral supplement for some asthma patients, however, it would need to be combined with therapies that target other aspects of the disease such as IgE levels. As such, further studies that examine the potential of WGP in combination with other therapies should be explored
Tissue‐resident macrophages actively suppress IL‐1beta release via a reactive prostanoid/IL‐10 pathway
The alarm cytokine interleukin‐1β (IL‐1β) is a potent activator of the inflammatory cascade following pathogen recognition. IL‐1β production typically requires two signals: first, priming by recognition of pathogen‐associated molecular patterns leads to the production of immature pro‐IL‐1β; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL‐1β from its pro‐form. However, despite the important role of IL‐1β in controlling local and systemic inflammation, its overall regulation is still not fully understood. Here we demonstrate that peritoneal tissue‐resident macrophages use an active inhibitory pathway, to suppress IL‐1β processing, which can otherwise occur in the absence of a second signal. Programming by the transcription factor Gata6 controls the expression of prostacyclin synthase, which is required for prostacyclin production after lipopolysaccharide stimulation and optimal induction of IL‐10. In the absence of secondary signal, IL‐10 potently inhibits IL‐1β processing, providing a previously unrecognized control of IL‐1β in tissue‐resident macrophages
The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors
Acknowledgments The authors wish to acknowledge the NIH-sponsored Mutant Mouse Regional Resource Center (MMRRC) National System as the source of genetically-altered mice (C57BL/6-Clec4etm1.1Cfg/Mmucd 031936-UCD) for use in this study. The mice were produced and deposited to the MMRRC by the Consortium for Functional Glycomics supported by the National Institute of General Medical Sciences (GM62116). We would like to thank Catherine Neiseryan and Ann Kift-Morgan for cell sorting. We would like to thank Wales Gene Park for providing computer resources that assisted this research. Funding: SJO was funded by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 099953/Z/12/Z) and by a Wellcome Trust ISSF Cross-Disciplinary Award. LCD is supported by a Henry Wellcome Trust Postdoctoral Fellowship (103973/Z/14/Z). CL is supported by a Kidney Research UK/MedImmune Joint Fellowship Award (PDF_006_20151127). GDB is funded by a Wellcome Trust Investigator Award (102705) and the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1). IRH is supported by a Wellcome Trust Senior Research Fellowship (207503/Z/17/Z). PRT is supported by a Wellcome Trust Investigator Award (107964/Z/15/Z) and the UK Dementia Research Institute. Funding URLs: https://wellcome.ac.uk/ https://royalsociety.org/ https://www.kidneyresearchuk.org/ https://mrc.ukri.org/ https://ukdri.ac.uk/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Data Availability: All relevant data apart from RNAseq files are within the manuscript and its Supporting Information files. RNAseq data files are available from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/), (accession number E-MTAB-8030).Peer reviewedPublisher PD
LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-γ Production by Repressing β-Catenin Activation in Dendritic Cells.
Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we demonstrate that LAB is involved in anti-fungal immunity. We show that Lat2−/− mice are more susceptible to C. albicans infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear β-catenin levels. This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12 and IL-23 production was blunted inLat2−/− DCs. Accordingly, Lat2−/− DCs directed reduced Th1 polarization in vitro and Lat2−/−mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-γ production in vivo/ex vivo. Thus our data define a novel link between LAB and β-catenin nuclear accumulation in DCs that facilitates IFN-γ responses during anti-fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family cytokines and an IFN-γ response for pathogen clearance
International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future
IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance
Candida spp. elicit cytokine production downstream of various pathogen recognition receptors (PRRs) including C-type lectin-like receptors (CLRs), Toll-like receptors (TLRs) and nucleotide oligomerisation domain (NOD)-like receptors (NLRs). IL-12 family members, IL-12p70 and IL-23, are important for host immunity against Candida spp. Herein we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to select Candida spp. We demonstrate a novel mechanism for C. parapsilosis-mediated induction of IL-27 in a TLR7-, MyD88- and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the interferon-α/β receptor (IFNAR) and STAT1/2 to induce IL-27. Moreover, IL 27R (WSX-1) deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared to WT mice. This was associated with increased levels of pro-inflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R deficient mice. Thus our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β and IL-27 and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens