97 research outputs found

    Process intensification in continuous flow biocatalysis by up and downstream processing strategies

    Get PDF
    In this review, we focus on the holistic continuous enzymatic production and put special emphasis on process intensification by up- and downstream processing in continuous flow biocatalysis. After a brief introduction, we provide an overview of current examples of enzyme immobilization as an upstream process for flow biocatalysis. Thereafter, we provide an overview of unit operations as downstream processing strategies, namely continuous (i) liquid–liquid extraction, (ii) adsorptive downstream processing, and (iii) crystallization and precipitation. Eventually, we present our perspectives on future trends in this research field

    Biocatalysis in Water or in Non-Conventional Media? Adding the CO2 Production for the Debate

    Get PDF
    Biocatalysis can be applied in aqueous media and in different non-aqueous solutions (non-conventional media). Water is a safe solvent, yet many synthesis-wise interesting substrates cannot be dissolved in aqueous solutions, and thus low concentrations are often applied. Conversely, non-conventional media may enable higher substrate loadings but at the cost of using (fossil-based) organic solvents. This paper determines the CO2 production—expressed as kg CO2·kg product−1—of generic biotransformations in water and non-conventional media, assessing both the upstream and the downstream. The key to reaching a diminished environmental footprint is the type of wastewater treatment to be implemented. If the used chemicals enable a conventional (mild) wastewater treatment, the production of CO2 is limited. If other (pre)treatments for the wastewater are needed to eliminate hazardous chemicals and solvents, higher environmental impacts can be expected (based on CO2 production). Water media for biocatalysis are more sustainable during the upstream unit—the biocatalytic step—than non-conventional systems. However, processes with aqueous media often need to incorporate extractive solvents during the downstream processing. Both strategies result in comparable CO2 production if extractive solvents are recycled at least 1–2 times. Under these conditions, a generic industrial biotransformation at 100 g L−1 loading would produce 15–25 kg CO2·kg product−1 regardless of the applied media

    A Deep Eutectic Solvent Thermomorphic Multiphasic System for Biocatalytic Applications

    Get PDF
    The applicability of a thermomorphic multiphasic system (TMS) composed of a hydrophobic deep eutectic solvent (DES) and an aqueous potassium phosphate buffer with a lower critical solution temperature (LCST) phase change for homogeneous biocatalysis was investigated. A lidocaine-based DES with the fatty acid oleic acid as a hydrogen-bond donor was studied. Phase diagrams were determined and presented within this study. We tested different additional components to the solvent system and observed a decrease in the cloud point of approximately 0.026 °C per concentration unit. Distribution studies revealed a clear distribution of the protein in the aqueous buffer phase (>95 %), whereas the hydrophobic substrate and educt accumulated (>95 %) in the DES-enriched layer. Finally, a reduction catalyzed by horse liver alcohol dehydrogenase was performed in a larger-scale experiment, and the biocatalyst could be recycled by simply removing the DES phase for three recycling runs

    Design of fusion enzymes for biocatalytic applications in aqueous and non-aqueous media

    Get PDF
    Biocatalytic cascades play a fundamental role in sustainable chemical synthesis. Fusion enzymes are one of the powerful toolboxes to enable the tailored combination of multiple enzymes for efficient cooperative cascades. Especially, this approach offers a substantial potential for the practical application of cofactor-dependent oxidoreductases by forming cofactor self-sufficient cascades. Adequate cofactor recycling while keeping the oxidized/reduced cofactor in a confined microenvironment benefits from the fusion fashion and makes the use of oxidoreductases in harsh non-aqueous media practical. In this mini-review, we have summarized the application of various fusion enzymes in aqueous and non-aqueous media with a focus on the discussion of linker design within oxidoreductases. The design and properties of the reported linkers have been reviewed in detail. Besides, the substrate loadings in these studies have been listed to showcase one of the key limitations (low solubility of hydrophobic substrates) of aqueous biocatalysis when it comes to efficiency and economic feasibility. Therefore, a straightforward strategy of applying non-aqueous media has been briefly discussed while the potential of using the fusion oxidoreductase of interest in organic media was highlighted. Copyright © 2022 Ma, Zhang, Vernet and Kara

    Crosslinked Aggregates of Fusion Enzymes in Microaqueous Organic Media

    Get PDF
    Baeyer-Villiger monooxygenases (BVMOs) are attractive for selectively oxidizing various ketones using oxygen into valuable esters and lactones. However, the application of BVMOs is restrained by cofactor dependency and enzyme instability combined with water-related downsides such as low substrate loading, low oxygen capacity, and water-induced side reactions. Herein, we described a redox-neutral linear cascade with in-situ cofactor regeneration catalyzed by fused alcohol dehydrogenase and cyclohexanone monooxygenase in aqueous and microaqueous organic media. The cascade conditions have been optimized regarding substrate concentrations as well as the amounts of enzymes and cofactors with the Design of Experiments (DoE). The carrier-free immobilization technique, crosslinked enzyme aggregates (CLEAs), was applied to fusion enzymes. The resultant fusion CLEAs were proven to function in microaqueous organic systems, in which the enzyme ratios, water contents (0.5–5 vol. %), and stability have been systematically studied. The fusion CLEAs showed promising operational (up to 5 cycles) and storage stability

    Solving Capacitated Location Routing Problem by Variable Neighborhood Descent and GA-Artificial Neural Network Hybrid Method

    Get PDF
    This paper aims to find the optimal depot locations and vehicle routings for spare parts of an automotive company considering future demands. The capacitated location-routing problem (CLRP), which has been practiced by various methods, is performed to find the optimal depot locations and routings by additionally using the artificial neural network (ANN). A novel multi-stage approach, which is performed to lower transportation cost, is carried out in CLRP. Initially, important factors for customer demand are tested with an univariate analysis and used as inputs in the prediction step. Then, genetic algorithm (GA) and ANN are hybridized and applied to provide future demands. The location of depots and the routings of the vehicles are determined by using the variable neighborhood descent (VND) algorithm. Five neighborhood structures, which are either routing or location type, are implemented in both shaking and local search steps. GA-ANN and VND are applied in the related steps successfully. Thanks to the performed VND algorithm, the company lowers its transportation cost by 2.35% for the current year, and has the opportunity to determine optimal depot locations and vehicle routings by evaluating the best and the worst cases of demand quantity for ten years ahead

    Enzymatic Cascade for the Synthesis of 2,5-Furandicarboxylic Acid in Biphasic and Microaqueous Conditions: ‘Media-Agnostic’ Biocatalysts for Biorefineries

    Get PDF
    5-hydroxymethylfurfural (HMF) is produced upon dehydration of C6 sugars in biorefineries. As the product, it remains either in aqueous solutions, or is in situ extracted to an organic medium (biphasic system). For the subsequent oxidation of HMF to 2,5-furandicarboxylic acid (FDCA), ‘media-agnostic’ catalysts that can be efficiently used in different conditions, from aqueous to biphasic, and to organic (microaqueous) media, are of interest. Here, the concept of a one-pot biocatalytic cascade for production of FDCA from HMF was reported, using galactose oxidase (GalOx) for the formation of 2,5-diformylfuran (DFF), followed by the lipase-mediated peracid oxidation of DFF to FDCA. GalOx maintained its catalytic activity upon exposure to a range of organic solvents with only 1 % (v/v) of water. The oxidation of HMF to 2,5-diformylfuran (DFF) was successfully established in ethyl acetate-based biphasic or microaqueous systems. To validate the concept, the reaction was conducted at 5 % (v/v) water, and integrated in a cascade where DFF was subsequently oxidized to FDCA in a reaction catalyzed by Candida antarctica lipase B. © 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH

    Design of a green chemoenzymatic cascade for scalable synthesis of bio-based styrene alternatives

    Get PDF
    As renewable lignin building blocks, hydroxystyrenes are particularly appealing as either a replacement or addition to styrene-based polymer chemistry. These monomers are obtained by decarboxylation of phenolic acids and often subjected to chemical modifications of their phenolic hydroxy groups to improve polymerization behaviour. Despite efforts, a simple, scalable, and purely (chemo)catalytic synthesis of acetylated hydroxystyrenes remains elusive. We thus propose a custom-made chemoenzymatic route that utilizes a phenolic acid decarboxylase (PAD). Our process development strategy encompasses a computational solvent assessment informing about solubilities and viable reactor operation modes, experimental solvent screening, cascade engineering, heterogenization of biocatalyst, tailoring of acetylation conditions, and reaction upscale in a rotating bed reactor. By this means, we established a clean one-pot two-step process that uses the renewable solvent CPME, bio-based phenolic acid educts and reusable immobilised PAD. The overall chemoenzymatic reaction cascade was demonstrated on a 1 L scale to yield 18.3 g 4-acetoxy-3-methoxystyrene in 96% isolated yield. © 2022 The Royal Society of Chemistry

    Hybrid catalysis for enantioselective Baeyer-Villiger oxidation and stereoselective epoxidation: a Cp*Ir complex to fuel FMN and FAD reduction for flavoprotein monooxygenase modules

    Get PDF
    Taking advantage of the unique properties of two-component flavo-monooxygenases and the ability of [Cp*Ir(bpy-OMe)H]+ to transfer hydrides to reduce flavins, we extended the scope of the pH- and oxygen-robust iridium(iii)-complex to drive the enzymatic reaction of a FMN-dependent Baeyer-Villiger monooxygenase and a FAD-dependent styrene monooxygenase (respectively FPMO Group C and E), using formic acid as H-donor for NADH recycling

    Convergent cascade catalyzed by monooxygenase - alcohol dehydrogenase fusion applied in organic media

    Get PDF
    With the aim of applying redox-neutral cascade reactions in organic media, fusions of a type II flavin-containing monooxy-genase (FMO-E) and horse liver alcohol dehydrogenase (HLADH) were designed. The enzyme orientation and expression vector were found to influence the overall fusion enzyme activity. The resulting bi-functional enzyme retained the catalytic properties of both individual enzymes. The lyophilized cell free extract containing the bifunctional enzyme was applied for the convergent cascade reaction consisting of cyclobutanone and 1,4-butanediol in different micro-aqueous media with only 5% (v/v) aqueous buffer without any addition of external cofactor. Methyl tert-butyl ether and cyclopentyl methyl ether were found to be the best organic media for the synthesis of Îł-butyrolactone resulting in ~27% analytical yield
    • 

    corecore