905 research outputs found

    The Effects of the Critical Ice Accretion on Airfoil and Wing Performance

    Get PDF
    In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential

    Some Remarks on the RRR Linkage

    Full text link

    Plasmonic nanoantenna design and fabrication based on evolutionary optimization

    Get PDF
    Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain which neglect the inertia of free metal electrons at optical frequencies causing phenomena such as complete field penetration, ohmic losses and plasmon resonances. Here we introduce a general and scalable evolutionary algorithm that accounts for topological constrains of the fabrication method and therefore yields unexpected nanoantenna designs exhibiting strong light localization and enhancement which can directly be "printed" by focused-ion beam milling. The fitness ranking in a hierarchy of such antennas is validated experimentally by two-photon photoluminescence. Analysis of the best antennas' operation principle shows that it deviates fundamentally from that of classical radio wave-inspired designs. Our work sets the stage for a widespread application of evolutionary optimization to a wide range of problems in nano photonics.Comment: 3 figures; please see the supplementary information for additional dat

    Effect of diet versus diet and exercise on weight loss and body composition in class II and III obesity: A systematic review

    Full text link
    Class II and III obesity (BMI >35 kg·m2) have increased dramatically in recent years. Current clinical guidelines suggest diet and exercise as first line treatment for adults throughout the spectrum of overweight and obesity. However, to date there is no systematic review that examines the effects of diet and exercise on this high risk population. This systematic review will examine the combined effects of diet versus diet and exercise on body composition in severe obesity. Medline and Cinahl were searched for randomised controlled trials comparing diet and exercise to diet alone. Studies published until July 2013 were included if they used reliable methods for analysing body composition in adults with BMI ≥ 35 kg·m2. Five of 459 studies met the inclusion criteria. Two studies, both in older adults, reported that exercise reduced lean mass loss during weight loss. Two studies showed that exercise facilitated (greater) fat mass loss. The remaining study reported no differences in body composition when exercise is added to energy restriction. Exercise training during energy restriction for individuals with BMI ≥35 kg.m2 may influence body composition outcomes but the evidence is limited. Further studies should focus on the efficacy of different exercise protocols during energy restriction for this population in order to better inform decision making for the treatment of severe obesity in respect to favourable body composition outcomes

    Static Testing of Propulsion Elements for Small Multirotor Unmanned Aerial Vehicles

    Get PDF
    The growing use of small multirotor aircraft has increased the interest in having better performance results especially with the propulsion system. The size of the propellers used on these aircraft operate at low Reynolds numbers that are typically less than 200,000. Static performance testing of ten propeller pairs (tractor and pusher) were completed and is the beginning of a systematic test of propellers used on multirotor systems. The propellers chosen for this initial set of tests were selected from four popular quadrotors. Besides testing the propellers provided with the aircraft, propellers that are sold as replacements from third-party companies were also tested. Both the 3D Robotics Solo and DJI Phantom 3 had multiple propellers tested and a method to compare the resulting endurance is discussed

    In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize

    Get PDF
    The glycoside hydrolase family 5 endocellulase, E1 (Cel5A), from Acidothermus cellulolyticus was transformed into both Nicotiana tabacum and Zea mays with expression targeted to the cell wall under a constitutive promoter. Here we explore the possibility that in planta expression of endocellulases will allow these enzymes to access their substrates during cell wall construction, rendering cellulose more amenable to pretreatment and enzyme digestion. Tobacco and maize plants were healthy and developed normally compared with the wild type (WT). After thermochemical pretreatment and enzyme digestion, transformed plants were clearly more digestible than WT, requiring lower pretreatment severity to achieve comparable conversion levels. Furthermore, the decreased recalcitrance was not due to post-pretreatment residual E1 activity and could not be reproduced by the addition of exogenous E1 to the biomass prior to pretreatment, indicating that the expression of E1 during cell wall construction altered the inherent recalcitrance of the cell wall

    Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses

    Get PDF
    Comparative studies between commercial Trichoderma reesei cellulase preparations show that, depending on the preparation and loading, total protein precipitation can be as high as 30 % under standard hydrolysis conditions used for lignocellulosic materials. ATR-IR and SDS-PAGE data verify precipitates are protein-based and contain key cell wall hydrolyzing enzymes. Precipitation increased considerably with incubation temperature; roughly 50–150 % increase from 40 to 50 °C and 800 % greater at 60 °C. All of the reported protein losses translated into significant, and often drastic, losses in activity on related 4-nitrophenyl substrates. In addition, supplementation with the non-ionic surfactant PEG 6,000 decreased precipitation up to 80 % in 24 h precipitation levels. Protein precipitation is potentially substantial during enzymatic hydrolysis of lignocelluloses and should be accounted for during lignocellulose conversion process design, particularly when enzyme recycling is considered.This work was supported by the project "Demonstrating Industrial scale second generation bioethaol production-Kalundborg Cellulosic Ethanol Plant" under the EU FP7 framework program and the project "Development of improved second generation (2G) bioethanol technology to prepare for commercialization under the Danish Energy Technology and Demonstration Programme (EUDP)

    A mathematical description of nerve fiber bundle trajectories and their variability in the human retina

    Get PDF
    AbstractWe developed a mathematical model wherein retinal nerve fiber trajectories can be described and the corresponding inter-subject variability analyzed. The model was based on traced nerve fiber bundle trajectories extracted from 55 fundus photographs of 55 human subjects. The model resembled the typical retinal nerve fiber layer course within 20° eccentricity. Depending on the location of the visual field test point, the standard deviation of the calculated corresponding angular location at the optic nerve head circumference ranged from less than 1° to 18°, with an average of 8.8°

    Robots, computer algebra and eight connected components

    Full text link
    Answering connectivity queries in semi-algebraic sets is a long-standing and challenging computational issue with applications in robotics, in particular for the analysis of kinematic singularities. One task there is to compute the number of connected components of the complementary of the singularities of the kinematic map. Another task is to design a continuous path joining two given points lying in the same connected component of such a set. In this paper, we push forward the current capabilities of computer algebra to obtain computer-aided proofs of the analysis of the kinematic singularities of various robots used in industry. We first show how to combine mathematical reasoning with easy symbolic computations to study the kinematic singularities of an infinite family (depending on paramaters) modelled by the UR-series produced by the company ``Universal Robots''. Next, we compute roadmaps (which are curves used to answer connectivity queries) for this family of robots. We design an algorithm for ``solving'' positive dimensional polynomial system depending on parameters. The meaning of solving here means partitioning the parameter's space into semi-algebraic components over which the number of connected components of the semi-algebraic set defined by the input system is invariant. Practical experiments confirm our computer-aided proof and show that such an algorithm can already be used to analyze the kinematic singularities of the UR-series family. The number of connected components of the complementary of the kinematic singularities of generic robots in this family is 88

    Differential response to resistance training in CHF according to ACE genotype

    Get PDF
    The Angiotensin Converting Enzyme (ACE) gene may influence the risk of heart disease and the response to various forms of exercise training may be at least partly dependent on the ACE genotype. We aimed to determine the effect of ACE genotype on the response to moderate intensity circuit resistance training in chronic heart failure (CHF) patients. Methods: The relationship between ACE genotype and the response to 11 weeks of resistance exercise training was determined in 37 CHF patients (New York Heart Association Functional Class=2.3±0.5; left ventricular ejection fraction 28±7%; age 64±12 years; 32:5 male:female) who were randomised to either resistance exercise (n=19) or inactive control group (n=18). Outcome measures included V˙ O2peak, peak power output and muscle strength and endurance. ACE genotype was determined using standard methods. Results: At baseline, patients who were homozygous for the I allele had higher V˙ O2peak (p=0.02) and peak power (p=0.003) compared to patients who were homozygous for the D allele. Patients with the D allele, who were randomised to resistance training, compared to non-exercising controls, had greater peak power increases (ID pb0.001; DD pb0.001) when compared with patients homozygous for the I allele, who did not improve. No significant genotype-dependent changes were observed in V˙ O2peak, muscle strength, muscle endurance or lactate threshold. Conclusion: ACE genotype may have a role in exercise tolerance in CHF and could also influence the effectiveness of resistance training in this condition
    corecore