34 research outputs found

    The miR-17∼92 microRNA cluster Is a global regulator of tumor metabolism

    Get PDF
    SummaryA central hallmark of cancer cells is the reprogramming of cellular metabolism to meet the bioenergetic and biosynthetic demands of malignant growth. Here, we report that the miR-17∼92 microRNA (miRNA) cluster is an oncogenic driver of tumor metabolic reprogramming. Loss of miR-17∼92 in Myc+ tumor cells leads to a global decrease in tumor cell metabolism, affecting both glycolytic and mitochondrial metabolism, whereas increased miR-17∼92 expression is sufficient to drive increased nutrient usage by tumor cells. We mapped the metabolic control element of miR-17∼92 to the miR-17 seed family, which influences cellular metabolism and mammalian target of rapamycin complex 1 (mTORC1) signaling through negative regulation of the LKB1 tumor suppressor. miR-17-dependent tuning of LKB1 levels regulates both the metabolic potential of Myc+ lymphomas and tumor growth in vivo. Our results establish metabolic reprogramming as a central function of the oncogenic miR-17∼92 miRNA cluster that drives the progression of MYC-dependent tumors

    Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) infection is a global health problem. A number of studies have implicated a direct role of cellular lipid metabolism in the HCV life cycle and inhibitors of the mevalonate pathway have been demonstrated to result in an antiviral state within the host cell. Transcriptome profiling was conducted on Huh-7 human hepatoma cells bearing subgenomic HCV replicons with and without treatment with 25-hydroxycholesterol (25-HC), an inhibitor of the mevalonate pathway that alters lipid metabolism, to assess metabolic determinants of pro- and antiviral states within the host cell. These data were compared with gene expression profiles from HCV-infected chimpanzees.</p> <p>Results</p> <p>Transcriptome profiling of Huh-7 cells treated with 25-HC gave 47 downregulated genes, 16 of which are clearly related to the mevalonate pathway. Fewer genes were observed to be upregulated (22) in the presence of 25-HC and 5 genes were uniquely upregulated in the HCV replicon bearing cells. Comparison of these gene expression profiles with data collected during the initial rise in viremia in 4 previously characterized HCV-infected chimpanzees yielded 54 overlapping genes, 4 of which showed interesting differential regulation at the mRNA level in both systems. These genes are PROX1, INSIG-1, NK4, and UBD. The expression of these genes was perturbed with siRNAs and with overexpression vectors in HCV replicon cells, and the effect on HCV replication and translation was assessed. Both PROX1 and NK4 regulated HCV replication in conjunction with an antiviral state induced by 25-hydroxycholesterol.</p> <p>Conclusion</p> <p>Treatment of Huh-7 cells bearing HCV replicons with 25-HC leads to the downregulation of many key genes involved in the mevalonate pathway leading to an antiviral state within the host cell. Furthermore, dysregulation of a larger subset of genes not directly related to the mevalonate pathway occurs both in 25-HC-treated HCV replicon harbouring cells as well as during the initial rise in viremia in infected chimpanzees. Functional studies of 3 of these genes demonstrates that they do not directly act as antiviral gene products but that they indirectly contribute to the antiviral state in the host cell. These genes may also represent novel biomarkers for HCV infection, since they demonstrate an outcome-specific expression profile.</p

    The Diverse Roles of microRNAs at the Host–Virus Interface

    No full text
    MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host&ndash;virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections

    Contemporary Zika Virus Isolates Induce More dsRNA and Produce More Negative-Strand Intermediate in Human Astrocytoma Cells

    No full text
    The recent emergence and rapid geographic expansion of Zika virus (ZIKV) poses a significant challenge for public health. Although historically causing only mild febrile illness, recent ZIKV outbreaks have been associated with more severe neurological complications, such as Guillain-Barr&#233; syndrome and fetal microcephaly. Here we demonstrate that two contemporary (2015) ZIKV isolates from Puerto Rico and Brazil may have increased replicative fitness in human astrocytoma cells. Over a single infectious cycle, the Brazilian isolate replicates to higher titers and induces more severe cytopathic effects in human astrocytoma cells than the historical African reference strain or an early Asian lineage isolate. In addition, both contemporary isolates induce significantly more double-stranded RNA in infected astrocytoma cells, despite similar numbers of infected cells across isolates. Moreover, when we quantified positive- and negative-strand viral RNA, we found that the Asian lineage isolates displayed substantially more negative-strand replicative intermediates than the African lineage isolate in human astrocytoma cells. However, over multiple rounds of infection, the contemporary ZIKV isolates appear to be impaired in cell spread, infecting a lower proportion of cells at a low MOI despite replicating to similar or higher titers. Taken together, our data suggests that contemporary ZIKV isolates may have evolved mechanisms that allow them to replicate with increased efficiency in certain cell types, thereby highlighting the importance of cell-intrinsic factors in studies of viral replicative fitness

    The efficacy of siRNAs against Hepatitis C virus Is strongly influenced by structure and target site accessibility

    Get PDF
    Hepatitis C virus (HCV) is a global health problem. Designing therapeutic agents that target HCV\u2019s RNA genome remains challenging. HCV genomic RNA is large and highly structured with long-range genome-scale ordered RNA structures. Predicting the secondary- and tertiary-structure elements that reveal the accessibility of target sites within HCV RNA is difficult because of the abundance of longrange interactions. Target site accessibility remains a significant barrier to the design of effective therapeutics such as small interfering RNAs (siRNAs) against different strains of HCV. Here we developed two methods that interrogate the folding of HCV RNA, an approach involving viral RNA microarrays (VRMs) and an HCV viral RNA-coated magnetic bead-based (VRB) assay. VRMs and VRBs were used to determine target site accessibility for siRNAs designed against the HCV genome. Both methods predicted potency of siRNAs in cell-culture models for HCV replication that are not easily predicted by informatics means.Peer reviewed: YesNRC publication: Ye

    Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses

    Get PDF
    By the analysis of thermodynamic RNA secondary structure predictions, we previously obtained evidence for evolutionarily conserved large-scale ordering of RNA virus genomes (P. Simmonds, A. Tuplin, and D.J. Evans, RNA 10: 1337-1351, 2004). Genome-scale ordered RNA structure (GORS) was widely distributed in many animal and plant viruses, much greater in extent than RNA structures required for viral translation or replication, but in mammalian viruses was associated with host persistence. To substantiate the existence of large-scale RNA structure differences between viruses, a large set of alignments of mammalian RNA viruses and rRNA sequences as controls were examined by thermodynamic methods (to calculate minimum free energy differences) and by algorithmically independent RNAz and Pfold methods. These methods produced generally concordant results and identified substantial differences in the degrees of evolutionarily conserved, sequence order-dependent RNA secondary structure between virus genera and groups. A probe hybridization accessibility assay was used to investigate the physical nature of GORS. Transcripts of hepatitis C virus (HCV), hepatitis G virus/GB virus-C (HGV/GBV-C), and murine norovirus, which are predicted to be structured, were largely inaccessible to hybridization in solution, in contrast to the almost universal binding of probes to a range of unstructured virus transcripts irrespective of G + C content. Using atomic force microscopy, HCV and HGV/GBV-C RNA was visualized as tightly compacted prolate spheroids, while under the same experimental conditions the predicted unstructured poliovirus and rubella virus RNA were pleomorphic and had extensively single-stranded RNA on deposition. Bioinformatic and physical characterization methods both identified fundamental differences in the configurations of viral genomic RNA that may modify their interactions with host cell defenses and their ability to persist

    Studies of a viral suppressor of RNA silencing p19-CFP fusion protein: A FRET-based probe for sensing double stranded fluorophore tagged small RNAs

    No full text
    Eukaryotes have evolved complex cellular responses to double-stranded RNA. One response that is highly conserved across many species is the RNA silencing pathway. Tombusviruses have evolved a mechanism to evade the RNA silencing pathway that involves a small protein, p19, that acts as a suppressor of RNA silencing. This protein binds specifically to small-interfering RNAs (siRNAs) with nanomolar affinity in a sequence-independent manner and with size selectivity.Peer reviewed: YesNRC publication: N

    Cysteine residues of Carnation Italian ringspot virus p19 suppressor of RNA silencing help maintain global structural integrity and stability for siRNA binding

    No full text
    Carnation Italian Ringspot virus (CIRV) has evolved a protein called p19 that acts as a suppressor of RNA silencing in the host cell and aids in viral persistence. This protein has been shown to be sensitive to cysteine alkylation resulting in a reduction in its ability to bind to short-interfering RNA (siRNA). To determine the sites within the protein that are sensitive to alkylation, we systematically tested the functional role of each cysteine residue using site-directed mutagenesis. Variants of the p19 protein were created at locations C110, C134 and C160 where the cysteines were replaced by an inert amino acid such as serine or isoleucine. The results from activity measurements of the purified mutant p19 proteins indicate that the mutants maintain the ability to bind siRNAs with nanomolar affinity, however, their stabilities, as measured by circular dichroism (CD), vary. Functional studies in the presence of the cysteine alkylating agent N-ethylmaleimide (NEM) indicated that p19's ability to bind siRNAs and act as a suppressor of RNA silencing is sensitive to alkylation at all three cysteine residues with the maximum effects occurring when C110 and C134 are both alkylated. These results suggest that the role of the cysteine amino acid conservation is likely to preserve the overall structural integrity of p19 for optimal thermostability and subsequent siRNA-binding activity. We find that p19 function is maximally compromised at high levels of thiol alkylation or in an oxidizing environment.Peer reviewed: YesNRC publication: N
    corecore