6 research outputs found

    Climate effects of a forestry company : including biogenic carbon fluxes and substitution effects

    Get PDF
    Forestry will play an important role in a future bioeconomy, by providing wood fibres for biomaterial and bioenergy. However, there are contradictory opinions on the climate change mitigation potential of forestry. Stora Enso, an international forestry company, has the ambition to improve its climate impact assessment at corporate level. In this work, a system perspective was applied, where greenhouse gas emissions from value chains, biogenic carbon fluxes from forest land owned or leased by Stora Enso and temporarily stored in harvested wood products, and the substitution effect, i.e. avoided emissions from substituted products and energy were considered. Furthermore, new substitution factors for pulp and paper products were developed. The estimated climate effect at corporate level was a net removal of -11.5 million Mg CO2-eq yr-1 (i.e. a climate benefit) when considering value chain emissions, biogenic carbon fluxes from forest land and harvested wood products, and avoided emissions from substitution. Uptake of biogenic carbon counteracted around 40% of the value chain emissions, while the largest climate benefit (removal of 17.9 million Mg CO2-eq) was due to substitution of more greenhouse gas-intensive products. The new substitution factors developed for pulp and paper products were applied in the climate impact calculation at company level. Important assumptions and possible improvements for future studies were identified, e.g. how to assess the impact of cascading wood use in substitution calculations

    Climate effects of a forestry company – including biogenic carbon fluxes and substitution effects (2021 update)

    Get PDF
    Forestry play an important role in the bioeconomy, and will continues to do so in the future, by providing wood fibres for biomaterial and bioenergy that substitute for fossil-based alternatives, while at the same time storing carbon in forests and harvested wood products. However, there are contradictory opinions on the climate change mitigation potential of forestry. Stora Enso, an international forestry company, has the ambition to improve its climate impact assessment at corporate level. In this work, a system perspective was applied, where greenhouse gas emissions from value chains, biogenic carbon fluxes from forest land owned or leased by Stora Enso and temporarily stored in harvested wood products, and the substitution effect, i.e. avoided emissions from substituted products and energy were considered. Furthermore, new substitution factors for pulp and paper products were developed. The current report is an update of the original report, published in 2020 (Hammar et. al. 2020), based on production and value chain emissions data for the year 2021, as well as Eucalyptus plantation area as of December 2020. Overall changes in greenhouse gas fluxes relative the ones published in Hammar et al. (2020) are minor. The estimated climate effect at corporate level for 2021 is a net removal of -11.0 million Mg CO2-eq yr-1 (i.e. a climate benefit) for the year 2021 (compared to -11.5 million Mg CO2-eq yr-1 for the year 2019) when considering value chain emissions, biogenic carbon fluxes from forest land and harvested wood products, and avoided emissions from substitution. Uptake of biogenic carbon counteracted around 40% of the value chain emissions (10.2 million Mg CO2-eq yr-1), while the largest climate benefit (removal of 17.2 million Mg CO2-eq) was due to substitution of more greenhouse gas-intensive products. The same substitution factors developed in Hammar et al. (2020) for pulp and paper products were applied in the climate impact calculation at company level. Possible improvements for future studies inclued, e.g., the assessment of the impact of cascading wood use in substitution calculations

    Analysis of climate impact of buildings in Swedish LCA-studies : Mapping of emission sources and gaps in knowledge

    Full text link
    KlimatförĂ€ndringar orsakade av utslĂ€pp av vĂ€xthusgaser Ă€r ett globalt problem. I SverigestĂ„r byggbranschen för en stor del av landets klimatpĂ„verkan och det i kombination meden expansiv samhĂ€llsbyggnad utgör en stor utmaning för framtiden. Kunskap om hurbyggbranschen kan minska sina vĂ€xthusgasutslĂ€pp Ă€r dĂ€rför relevant. I den hĂ€r studienanalyseras befintliga livscykelanalyser utförda pĂ„ byggnader för att avgöra hur den totalaklimatpĂ„verkan för en byggnad fördelas över dess livscykel. Studien innefattar Ă€vennĂ€rmare analys kring vad som orsakar betydande klimatpĂ„verkan i olika skeden av enbyggnads livscykel. En inventering av befintliga studier utfördes med metoden för ensystematisk litteraturöversikt som grund dĂ€r ett sökprotokoll utformas med sökord ochsökstrategier. Materialet har sedan systematiskt gallrats enligt satta kriterier tills detslutgiltiga urvalet resulterade i 17 studier till analys. Dessa studiers resultatsammanstĂ€lldes enligt moduluppdelningen i standarden HĂ„llbarhet för byggnadsverk SS-EN 15978:2011, bĂ„de i absoluta tal och andel av byggnadens totala klimatpĂ„verkan.Modulerna, som motsvarar skeden i en byggnads livscykel, jĂ€mfördes med varandra föratt utröna hur klimatpĂ„verkan var fördelad över livscykeln. Bidragande faktorer inomvarje modul studerades för att identifiera faktorer med betydande klimatpĂ„verkan somorsakade en stor skillnad mot övriga moduler. Analysen visar pĂ„ tvĂ„ skeden som harbetydligt större klimatpĂ„verkan Ă€n övriga: produktion av material och konstruktionsdelarsamt drift av byggnaden. Faktorer som Ă€r betydande för dessa tvĂ„ skeden Ă€r anvĂ€ndandetav betong, byggnadens berĂ€knade livslĂ€ngd samt andelen fossil el som anvĂ€nds viddriften av byggnaden framförallt för uppvĂ€rmning. Analysmaterialet innehöll storavariationer i syfte och dĂ€rmed tillvĂ€gagĂ„ngssĂ€tt vilket försvĂ„rade analysen och visar pĂ„bristen av ett gemensamt arbetssĂ€tt. Denna studie synliggör behovet av fortsatta studiersom berör biomaterial som kolsĂ€nka, framtida arbetssĂ€tt med livscykelanalyser, andrafaktorer som markanvĂ€ndning, skogsbruk och ekonomi samt miljöpĂ„verkanskategorierutöver klimatpĂ„verkan. Detta kan leda till ett utvecklat arbete med att minskabyggbranschens klimatpĂ„verkan.Climate change as a result of greenhouse gas emissions is a global issue. A large part ofSweden’s climate impact originates from the construction industry and in combinationwith an expansive urban planning it constitutes a big challenge for the future. Knowledgeof how the construction industry can reduce its greenhouse gas emissions is thereforerelevant. In this study, previous life cycle assessment studies on buildings were analyzedto determine how the total climate impact of a building is distributed over its life cycle.Included in this study is also a closer look on what causes considerable climate impact inthe different stages of a building’s life cycle. An inventory of previous studies wasperformed based on the method of a systematic literature review were a search protocolwith search phrases and strategies are constructed. The material went through a systematicscreening process according to certain criteria that resulted in 17 studies used for analysis.A matrix was made of the result of these studies according to the modules in the Europeanstandard Sustainability of construction works EN 15978:2011, with both absolutenumbers and share of total impact. The modules, which represents different phases in abuilding’s life cycle, were compared to each other to establish how climate impact wasdistributed over the life cycle. Contributing factors in each module were examined toidentify factors with considerable climate impact causing modules to differ. The analysisshowed two phases with noticeably bigger impact than the rest: production of materialsand construction parts and the buildings use phase. Factors important for the impact fromthese two phases were the use of concrete, the buildings assumed life span and the amountof fossil electricity used during the use phase, in particular for heating. The analyzedmaterial contained big variations in goal and scope and therefore also assessmentapproach which complicated the analysis and shows the lack of a unified assessmentprocedure. This study shows the need for more studies concerning embodied carbonemissions and the use of bio-based materials, strategies for using life cycle assessmentsin construction, other factors with impact on a building’s sustainability such as land use,forestry, economy and environmental impact categories besides climate change. Thiscould lead to further developed work on reducing climate impact from construction

    Analysis of climate impact of buildings in Swedish LCA-studies : Mapping of emission sources and gaps in knowledge

    Full text link
    KlimatförĂ€ndringar orsakade av utslĂ€pp av vĂ€xthusgaser Ă€r ett globalt problem. I SverigestĂ„r byggbranschen för en stor del av landets klimatpĂ„verkan och det i kombination meden expansiv samhĂ€llsbyggnad utgör en stor utmaning för framtiden. Kunskap om hurbyggbranschen kan minska sina vĂ€xthusgasutslĂ€pp Ă€r dĂ€rför relevant. I den hĂ€r studienanalyseras befintliga livscykelanalyser utförda pĂ„ byggnader för att avgöra hur den totalaklimatpĂ„verkan för en byggnad fördelas över dess livscykel. Studien innefattar Ă€vennĂ€rmare analys kring vad som orsakar betydande klimatpĂ„verkan i olika skeden av enbyggnads livscykel. En inventering av befintliga studier utfördes med metoden för ensystematisk litteraturöversikt som grund dĂ€r ett sökprotokoll utformas med sökord ochsökstrategier. Materialet har sedan systematiskt gallrats enligt satta kriterier tills detslutgiltiga urvalet resulterade i 17 studier till analys. Dessa studiers resultatsammanstĂ€lldes enligt moduluppdelningen i standarden HĂ„llbarhet för byggnadsverk SS-EN 15978:2011, bĂ„de i absoluta tal och andel av byggnadens totala klimatpĂ„verkan.Modulerna, som motsvarar skeden i en byggnads livscykel, jĂ€mfördes med varandra föratt utröna hur klimatpĂ„verkan var fördelad över livscykeln. Bidragande faktorer inomvarje modul studerades för att identifiera faktorer med betydande klimatpĂ„verkan somorsakade en stor skillnad mot övriga moduler. Analysen visar pĂ„ tvĂ„ skeden som harbetydligt större klimatpĂ„verkan Ă€n övriga: produktion av material och konstruktionsdelarsamt drift av byggnaden. Faktorer som Ă€r betydande för dessa tvĂ„ skeden Ă€r anvĂ€ndandetav betong, byggnadens berĂ€knade livslĂ€ngd samt andelen fossil el som anvĂ€nds viddriften av byggnaden framförallt för uppvĂ€rmning. Analysmaterialet innehöll storavariationer i syfte och dĂ€rmed tillvĂ€gagĂ„ngssĂ€tt vilket försvĂ„rade analysen och visar pĂ„bristen av ett gemensamt arbetssĂ€tt. Denna studie synliggör behovet av fortsatta studiersom berör biomaterial som kolsĂ€nka, framtida arbetssĂ€tt med livscykelanalyser, andrafaktorer som markanvĂ€ndning, skogsbruk och ekonomi samt miljöpĂ„verkanskategorierutöver klimatpĂ„verkan. Detta kan leda till ett utvecklat arbete med att minskabyggbranschens klimatpĂ„verkan.Climate change as a result of greenhouse gas emissions is a global issue. A large part ofSweden’s climate impact originates from the construction industry and in combinationwith an expansive urban planning it constitutes a big challenge for the future. Knowledgeof how the construction industry can reduce its greenhouse gas emissions is thereforerelevant. In this study, previous life cycle assessment studies on buildings were analyzedto determine how the total climate impact of a building is distributed over its life cycle.Included in this study is also a closer look on what causes considerable climate impact inthe different stages of a building’s life cycle. An inventory of previous studies wasperformed based on the method of a systematic literature review were a search protocolwith search phrases and strategies are constructed. The material went through a systematicscreening process according to certain criteria that resulted in 17 studies used for analysis.A matrix was made of the result of these studies according to the modules in the Europeanstandard Sustainability of construction works EN 15978:2011, with both absolutenumbers and share of total impact. The modules, which represents different phases in abuilding’s life cycle, were compared to each other to establish how climate impact wasdistributed over the life cycle. Contributing factors in each module were examined toidentify factors with considerable climate impact causing modules to differ. The analysisshowed two phases with noticeably bigger impact than the rest: production of materialsand construction parts and the buildings use phase. Factors important for the impact fromthese two phases were the use of concrete, the buildings assumed life span and the amountof fossil electricity used during the use phase, in particular for heating. The analyzedmaterial contained big variations in goal and scope and therefore also assessmentapproach which complicated the analysis and shows the lack of a unified assessmentprocedure. This study shows the need for more studies concerning embodied carbonemissions and the use of bio-based materials, strategies for using life cycle assessmentsin construction, other factors with impact on a building’s sustainability such as land use,forestry, economy and environmental impact categories besides climate change. Thiscould lead to further developed work on reducing climate impact from construction

    Time dynamic climate impacts of a eucalyptus pulp product: Life cycle assessment including biogenic carbon and substitution effects

    Get PDF
    The forest sector can play a pivotal role in mitigating climate warming by decreasing emissions to the atmosphere and increasing carbon removals. In an expanding bioeconomy, the pulp and paper industry provides opportunities for various low-carbon wood products with promising substitution effects. However, assessing climate effects of wood product systems is complex and requires a holistic approach. The objective of this study was to advance time dynamic climate impact assessment of a bioeconomically promising wood product from a system perspective. For this purpose, a time dynamic life cycle assessment was conducted on a pulp-based beverage carton. The assessment included fossil value chain emissions from cradle to grave, effects from biogenic carbon in a eucalyptus plantation, and credits from substitution. A polyethylene terephthalate (PET) bottle was considered for material substitution (MS) and differing marginal electricity and heat mixes for energy substitution. The results revealed dominating climate warming from value chain emissions and slight offsetting by biogenic carbon from standing biomass and soil organic carbon, and short-term carbon storage in the beverage carton. MS and displacing marginal energy mixes transformed the climate warming into a substantial total cooling effect. However, substitution effects varied strongly in terms of substitution factors and temperature change with varying replacement rate of the beverage carton and different marginal energy mixes. A climate cooling range of -0.8 center dot 10(-15) to -1.8 center dot 10(-15) K per unit of beverage carton by 2050 was found, highlighting potential relevance for climate policy making. Thus, production and use of wood-based beverage cartons over PET bottles can have climate cooling effects. Further assessments on alternative forestry systems (e.g., Nordic forests) are needed to identify the role of biogenic carbon in holistic climate assessments, with dynamic substitution effects included to increase the validity

    Placering av keramiska membran i GörvÀlnverket

    Full text link
    Denna rapport behandlar membran för vattenrening tillverkade av oorganiskt icke-metalliskt material, kallade keramiska membran. Rapporten undersöker om keramiska membran kan ersÀtta ett eller flera reningssteg i GörvÀlnverket. Vattenverket ligger i Stockholms lÀn och försörjer i dagslÀget en halv miljon mÀnniskor med dricksvatten.  I framtiden kommer GörvÀlnverket behöva bemöta utmaningar som en ökande befolkning, ökad mÀngd mikroorganismer och ökad mÀngd löst organiskt material i vattnet. Dessa utmaningar gör att vattenverket behöver uppgraderas. Ett alternativ Àr att ersÀtta  ett eller flera befintliga reningssteg med keramiska membran. För att kunna göra en bedömning av vilket steg som bör ersÀttas med keramiska membran har literaturstudier gjorts om membranen, GörvÀlnverkets nuvarande vattenberedning och ett studiebesök pÄ verket har utförts. Studien resulterade i slutsatsen att sandfilter Àr det steg som Àr lÀmpligast att byta ut. Bytet skulle innebÀra en ökad produktion av vatten förutsatt att resterande reningssteg i kan uppnÄ samma produktionskapacitet
    corecore