2 research outputs found

    Cellular immune responses induced <i>in vitro</i> by <i>Ehrlichia ruminantium</i> secreted proteins and identification of vaccine candidate peptides

    No full text
    Secreted proteins are reported to induce cell-mediated immunity characterised by the production of interferon-gamma (IFN)-γ. In this study three open reading frames (ORFs) (Erum8060, Erum7760, Erum5000) encoding secreted proteins were selected from the Ehrlichia ruminantium (Welgevonden) genome sequence using bioinformatics tools to determine whether they induce a cellular immune response in vitro with mononuclear cells from needle and tick infected animals. The whole recombinant protein of the three ORFs as well as four adjacent fragments of the Erum5000 protein (Erum5000A, Erum5000B, Erum5000C, Erum5000D) were successfully expressed in a bacterial expression system which was confirmed by immunoblots using anti-His antibodies and sheep sera. These recombinant proteins were assayed with immune sheep and cattle peripheral blood mononuclear cells (PBMCs), spleen and lymph node (LN) cells to determine whether they induce recall cellular immune responses in vitro. Significant proliferative responses and IFN-γ production were evident for all recombinant proteins, especially Erum5000A, in both ruminant species tested. Thus overlapping peptides spanning Erum5000A were synthesised and peptides that induce proliferation of memory CD4+ and CD8+ T cells and production of IFN-γ were identified. These results illustrate that a Th1 type immune response was elicited and these recombinant proteins and peptides may therefore be promising candidates for development of a heartwater vaccine

    Screening of apical membrane antigen-1 (AMA1), dense granule protein-7 (GRA7) and rhoptry protein-16 (ROP16) antigens for a potential vaccine candidate against Toxoplasma gondii for chickens

    No full text
    Toxoplasmosis is a zoonotic disease caused by the protozoan parasite, Toxoplasma gondii known to infect almost all animals, including birds and humans globally. This disease has impacted the livestock industry and public health, where infection of domestic animals increases the zoonotic risk of transmission of infection to humans, threatening public health. Hence the need to discover novel and safe vaccines to fight against toxoplasmosis. In the current study, a novel multiepitope vaccine was designed using immunoinformatics techniques targeting T. gondii AMA1, GRA7 and ROP16 antigens, consisting of antigenic, immunogenic, non-allergenic and cytokine inducing T-cell (9 CD8+ and 15 CD4+) epitopes and four (4) B-cell epitopes fused together using AAY, KK and GPGPG linkers. The tertiary model of the proposed vaccine was predicted and validated to confirm the structural quality of the vaccine. The designed vaccine was highly antigenic (antigenicity = 0.6645), immunogenic (score = 2.89998), with molecular weight of 73.35 kDa, instability and aliphatic index of 28.70 and 64.10, respectively; and GRAVY of −0.363. The binding interaction, stability and flexibility were assessed with molecular docking and dynamics simulation, which revealed the proposed vaccine to have good structural interaction (binding affinity = −106.882 kcal/mol) and stability when docked with Toll like receptor-4 (TLR4). The results revealed that the Profilin-adjuvanted vaccine is promising, as it predicted induction of enhanced immune responses through the production of cytokines and antibodies critical in blocking host invasion
    corecore