1,034 research outputs found

    Low-temperature ordered phases of the spin-12\frac{1}{2} XXZ chain system Cs2_2CoCl4_4

    Full text link
    In this study the magnetic order of the spin-1/2 XXZ chain system Cs2_2CoCl4_4 in a temperature range from 50 mK to 0.5 K and in applied magnetic fields up to 3.5 T is investigated by high-resolution measurements of the thermal expansion and the specific heat. Applying magnetic fields along a or c suppresses TNT_\textrm{N} completely at about 2.1 T. In addition, we find an adjacent intermediate phase before the magnetization saturates close to 2.5 T. For magnetic fields applied along b, a surprisingly rich phase diagram arises. Two additional transitions are observed at critical fields μ0HSF10.25\mu_0 H_{SF1}\simeq 0.25 T and μ0HSF20.7\mu_0 H_{SF2}\simeq 0.7 T, which we propose to arise from a two-stage spin-flop transition.Comment: 10 pages, 10 figure

    Local Magnetization in the Boundary Ising Chain at Finite Temperature

    Full text link
    We study the local magnetization in the 2-D Ising model at its critical temperature on a semi-infinite cylinder geometry, and with a nonzero magnetic field hh applied at the circular boundary of circumference β\beta. This model is equivalent to the semi-infinite quantum critical 1-D transverse field Ising model at temperature Tβ1T \propto \beta^{-1}, with a symmetry-breaking field h\propto h applied at the point boundary. Using conformal field theory methods we obtain the full scaling function for the local magnetization analytically in the continuum limit, thereby refining the previous results of Leclair, Lesage and Saleur in Ref. \onlinecite{Leclair}. The validity of our result as the continuum limit of the 1-D lattice model is confirmed numerically, exploiting a modified Jordan-Wigner representation. Applications of the result are discussed.Comment: 9 pages, 3 figure

    Information in Tullock contests

    Get PDF
    In Tullock contests in which the common value of the prize is uncertain and the elasticity of the marginal cost of effort is increasing (decreasing), the effect of changes of players’ information on the equilibrium efforts and payoffs is unambiguous: if information is symmetric, then expected effort decreases (increases) as players become better informed; in two-player contests, the expected effort of a player with information advantage is less (greater) than that of his opponent. Sharper results arise when the cost of effort is linear: Under symmetric information, expected effort and payoff are invariant to changes in the players’ information. In two-player contests, both players exert the same expected effort regardless of their information, although expected effort is smaller when one player has information advantage than when both players have the same information. Interestingly, the expected payoff of a player with information advantage is larger than that of his opponent, even though he wins the prize less frequently.Acknowledgments of financial support: Israel Science Foundation, Grant 648/2 (Einy); Ministerio Economía (Spain), Grants ECO2014-55953-P and MDM2014-0431, and Comunidad de Madrid, Grant S2015/HUM-3444 (Moreno)

    Counting statistics in multiple path geometries and the fluctuations of the integrated current in a quantum stirring device

    Full text link
    The amount QQ of particles that are transported via a path of motion is characterized by its expectation value and by its variance Var(Q)Var(Q). We analyze what happens if a particle has two optional paths available to get from one site to another site, and in particular what is Var(Q)Var(Q) for the current which is induced in a quantum stirring device. It turns out that coherent splitting and the stirring effect are intimately related and cannot be understood within the framework of the prevailing probabilistic theory.Comment: 11 pages, 2 figures, published version, Latex Eq# correcte

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Peripheral fillings of relatively hyperbolic groups

    Full text link
    A group theoretic version of Dehn surgery is studied. Starting with an arbitrary relatively hyperbolic group GG we define a peripheral filling procedure, which produces quotients of GG by imitating the effect of the Dehn filling of a complete finite volume hyperbolic 3--manifold MM on the fundamental group π1(M)\pi_1(M). The main result of the paper is an algebraic counterpart of Thurston's hyperbolic Dehn surgery theorem. We also show that peripheral subgroups of GG 'almost' have the Congruence Extension Property and the group GG is approximated (in an algebraic sense) by its quotients obtained by peripheral fillings. Various applications of these results are discussed.Comment: The difference with the previous version is that Proposition 3.2 is proved for quasi--geodesics instead of geodesics. This allows to simplify the exposition in the last section. To appear in Invent. Mat

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures

    Velocity correlations in granular materials

    Full text link
    A system of inelastic hard disks in a thin pipe capped by hot walls is studied with the aim of investigating velocity correlations between particles. Two effects lead to such correlations: inelastic collisions help to build localized correlations, while momentum conservation and diffusion produce long ranged correlations. In the quasi-elastic limit, the velocity correlation is weak, but it is still important since it is of the same order as the deviation from uniformity. For system with stronger inelasticity, the pipe contains a clump of particles in highly correlated motion. A theory with empirical parameters is developed. This theory is composed of equations similar to the usual hydrodynamic laws of conservation of particles, energy, and momentum. Numerical results show that the theory describes the dynamics satisfactorily in the quasi-elastic limit, however only qualitatively for stronger inelasticity.Comment: 12 pages (REVTeX), 15 figures (Postscript). submitted to Phys. Rev.

    On the algorithmic construction of classifying spaces and the isomorphism problem for biautomatic groups

    Full text link
    We show that the isomorphism problem is solvable in the class of central extensions of word-hyperbolic groups, and that the isomorphism problem for biautomatic groups reduces to that for biautomatic groups with finite centre. We describe an algorithm that, given an arbitrary finite presentation of an automatic group Γ\Gamma, will construct explicit finite models for the skeleta of K(Γ,1)K(\Gamma,1) and hence compute the integral homology and cohomology of Γ\Gamma.Comment: 21 pages, 4 figure
    corecore