49 research outputs found

    Critical-point model dielectric function analysis of WO3 thin films deposited by atomic layer deposition techniques

    Get PDF
    WO3 thin films were grown by atomic layer deposition and spectroscopic ellipsometry data gathered in the photon energy range of 0.72-8.5 eV and from multiple samples was utilized to determine the frequency dependent complex-valued isotropic dielectric function for WO3. We employ a critical-point model dielectric function analysis and determine a parameterized set of oscillators and compare the observed critical-point contributions with the vertical transition energy distribution found within the band structure of WO3 calculated by density functional theory. We investigate surface roughness with atomic force microscopy and compare to ellipsometric determined effective roughness layer thickness

    Tunable plasmonic resonances in highly porous nano-bamboo Si-Au superlattice-type thin films

    Get PDF
    We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. The superlattice-type columns resemble bamboo structures where smaller column sections of gold form junctions sandwiched between larger silicon column sections (“nano-bamboo”). We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous nano-bamboo structures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is observed in the vicinity of the gold subcolumns. We demonstrate tuning of this quadrupole-like mode frequency within the near-infrared spectral range by varying the geometry of the nano-bamboo structure. In addition, coupled-plasmon-like and inter-band transition-like modes occur in the visible and ultra-violet spectral regions, respectively. We elucidate an example for the potential use of the nano-bamboo structures as a highly porous plasmonic sensor with optical read out sensitivity to few parts-per-million solvent levels in water

    Low-angle X-ray diffraction of colloid SiO2-solutions

    Full text link

    Data from: A method for analysis of phenotypic change for phenotypes described by high-dimensional data

    Full text link
    The analysis of phenotypic change is important for several evolutionary biology disciplines, including phenotypic plasticity, evolutionary developmental biology, morphological evolution, physiological evolution, evolutionary ecology and behavioral evolution. It is common for researchers in these disciplines to work with multivariate phenotypic data. When phenotypic variables exceed the number of research subjects—data called ‘high-dimensional data’—researchers are confronted with analytical challenges. Parametric tests that require high observation to variable ratios present a paradox for researchers, as eliminating variables potentially reduces effect sizes for comparative analyses, yet test statistics require more observations than variables. This problem is exacerbated with data that describe ‘multidimensional’ phenotypes, whereby a description of phenotype requires high-dimensional data. For example, landmark-based geometric morphometric data use the Cartesian coordinates of (potentially) many anatomical landmarks to describe organismal shape. Collectively such shape variables describe organism shape, although the analysis of each variable, independently, offers little benefit for addressing biological questions. Here we present a nonparametric method of evaluating effect size that is not constrained by the number of phenotypic variables, and motivate its use with example analyses of phenotypic change using geometric morphometric data. Our examples contrast different characterizations of body shape for a desert fish species, associated with measuring and comparing sexual dimorphism between two populations. We demonstrate that using more phenotypic variables can increase effect sizes, and allow for stronger inferences

    Tunable plasmonic resonances in highly porous nano-bamboo Si-Au superlattice-type thin films

    Get PDF
    We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. The superlattice-type columns resemble bamboo structures where smaller column sections of gold form junctions sandwiched between larger silicon column sections (“nano-bamboo”). We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous nano-bamboo structures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is observed in the vicinity of the gold subcolumns. We demonstrate tuning of this quadrupole-like mode frequency within the near-infrared spectral range by varying the geometry of the nano-bamboo structure. In addition, coupled-plasmon-like and inter-band transition-like modes occur in the visible and ultra-violet spectral regions, respectively. We elucidate an example for the potential use of the nano-bamboo structures as a highly porous plasmonic sensor with optical read out sensitivity to few parts-per-million solvent levels in water

    Precursor-surface interactions revealed during plasma-enhanced atomic layer deposition of metal oxide thin films by in-situ spectroscopic ellipsometry

    Get PDF
    We find that a five-phase (substrate, mixed native oxide and roughness interface layer, metal oxide thin film layer, surface ligand layer, ambient) model with two-dynamic (metal oxide thin film layer thickness and surface ligand layer void fraction) parameters (dynamic dual box model) is sufficient to explain in-situ spectroscopic ellipsometry data measured within and across multiple cycles during plasma-enhanced atomic layer deposition of metal oxide thin films. We demonstrate our dynamic dual box model for analysis of in-situ spectroscopic ellipsometry data in the photon energy range of 0.7–3.4 eV measured with time resolution of few seconds over large numbers of cycles during the growth of titanium oxide (TiO2) and tungsten oxide (WO3) thin films, as examples. We observe cyclic surface roughening with fast kinetics and subsequent roughness reduction with slow kinetics, upon cyclic exposure to precursor materials, leading to oscillations of the metal thin film thickness with small but positive growth per cycle. We explain the cyclic surface roughening by precursor-surface interactions leading to defect creation, and subsequent surface restructuring. Atomic force microscopic images before and after growth, x-ray photoelectron spectroscopy, and x-ray diffraction investigations confirm structural and chemical properties of our thin films. Our proposed dynamic dual box model may be generally applicable to monitor and control metal oxide growth in atomic layer deposition, and we include data for Sio2 and Al2o3 as further examples

    Critical-point model dielectric function analysis of WO3 thin films deposited by atomic layer deposition techniques

    Get PDF
    WO3 thin films were grown by atomic layer deposition and spectroscopic ellipsometry data gathered in the photon energy range of 0.72-8.5 eV and from multiple samples was utilized to determine the frequency dependent complex-valued isotropic dielectric function for WO3. We employ a critical-point model dielectric function analysis and determine a parameterized set of oscillators and compare the observed critical-point contributions with the vertical transition energy distribution found within the band structure of WO3 calculated by density functional theory. We investigate surface roughness with atomic force microscopy and compare to ellipsometric determined effective roughness layer thickness

    pupfish shape

    Full text link
    Procrustes residuals, source, sex, and centroid size data for 54 specimens of Cyprinodon pecosensis. Data were collected from collections from the Museum of Southwestern Biology, University of New Mexico. Accession numbers are as follows: Marsh sample: MSB 49238; Sinkhole sample: MSB 43612

    Decitabine demonstrates antileukemic activity in B cell precursor acute lymphoblastic leukemia with MLL rearrangements

    Full text link
    Abstract Background Promotor hypermethylation of CpG islands is common in B cell precursor acute lymphoblastic leukemia (BCP-ALL) with mixed lineage leukemia (MLL) gene rearrangements. Hypomethylating agents (HMA) such as azacitidine (AZA) and decitabine (DEC) reduce DNA hypermethylation by incorporation into DNA and were successfully introduced into the clinic for the treatment of myeloid neoplasias. Methods Here, we investigated whether HMA induce comparable biological effects in MLL-positive BCP-ALL. Further, efficacy of HMA and concomitant application of cytostatic drugs (cytarabine and doxorubicin) were evaluated on established SEM and RS4;11 cell lines. In addition, promising approaches were studied on BCP-ALL cell line- and patient-derived xenograft models. Results In general, DEC effects were stronger compared to AZA on MLL-positive BCP-ALL cells. DEC significantly reduced proliferation by induction of cell cycle arrest in G0/G1 phase and apoptosis. Most sensitive to HMA were SEM cells which are characterized by a fast cell doubling time. The combination of low-dose HMA and conventional cytostatic agents revealed a heterogeneous response pattern. The strongest antiproliferative effects were observed when ALL cells were simultaneously exposed to HMA and cytostatic drugs. Most potent synergistic effects of HMA were induced with cytarabine. Finally, the therapeutic potential of DEC was evaluated on BCP-ALL xenograft models. DEC significantly delayed leukemic proliferation in xenograft models as demonstrated longitudinally by non-invasive bioluminescence as well as 18F-FDG-PET/CT imaging. Unexpectedly, in vivo concomitant application of DEC and cytarabine did not enhance the antiproliferative effect compared to DEC monotherapy. Conclusions Our data reveal that DEC is active in MLL-positive BCP-ALL and warrant clinical evaluation
    corecore