945 research outputs found

    Complementarity relation for irreversible process derived from stochastic energetics

    Full text link
    When the process of a system in contact with a heat bath is described by classical Langevin equation, the method of stochastic energetics [K. Sekimoto, J. Phys. Soc. Jpn. vol. 66 (1997) p.1234] enables to derive the form of Helmholtz free energy and the dissipation function of the system. We prove that the irreversible heat Q_irr and the time lapse $Delta t} of an isothermal process obey the complementarity relation, Q_irr {Delta t} >= k_B T S_min, where S_min depends on the initial and the final values of the control parameters, but it does not depend on the pathway between these values.Comment: 3 pages. LaTeX with 6 style macro

    The Carnot Cycle for Small Systems: Irreversibility and the Cost of Operations

    Full text link
    We employ the recently developed framework of the energetics of stochastic processes (called `stochastic energetics'), to re-analyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external `macroscopic' operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon.Comment: 11 pages with 3 figures. Resubmitted to Physical Review E. Many paragraphs have been modifie

    Inattainability of Carnot efficiency in the Brownian heat engine

    Full text link
    We discuss the reversibility of Brownian heat engine. We perform asymptotic analysis of Kramers equation on B\"uttiker-Landauer system and show quantitatively that Carnot efficiency is inattainable even in a fully overdamping limit. The inattainability is attributed to the inevitable irreversible heat flow over the temperature boundary.Comment: 5 pages, to appear in Phys. Rev.

    Jarzynski equality for the transitions between nonequilibrium steady states

    Full text link
    Jarzynski equality [Phys. Rev. E {\bf 56}, 5018 (1997)] is found to be valid with slight modefication for the transitions between nonequilibrium stationary states, as well as the one between equilibrium states. Also numerical results confirm its validity. Its relevance for nonequilibrium thermodynamics of the operational formalism is discussed.Comment: 5 pages, 2 figures, revte

    Momentum transfer in non-equilibrium steady states

    Full text link
    When a Brownian object interacts with non-interacting gas particles under non-equilibrium conditions, the energy dissipation associated to the Brownian motion causes an additional force on the object as a `momentum transfer deficit'. This principle is demonstrated first by a new NESS model and then applied to several known models such as adiabatic piston for which simple explanation has been lacking.Comment: 4 pages, 3 figure

    Thermodynamics of a Colloidal Particle in a Time-Dependent Non-Harmonic Potential

    Full text link
    We study the motion of an overdamped colloidal particle in a time-dependent non-harmonic potential. We demonstrate the first law-like balance between applied work, exchanged heat, and internal energy on the level of a single trajectory. The observed distribution of applied work is distinctly non-Gaussian in good agreement with numerical calculations. Both the Jarzynski relation and a detailed fluctuation theorem are verified with good accuracy

    Molecular Chemical Engines: Pseudo-Static Processes and the Mechanism of Energy Transduction

    Full text link
    We propose a simple theoretical model for a molecular chemical engine that catalyzes a chemical reaction and converts the free energy released by the reaction into mechanical work. Binding and unbinding processes of reactant and product molecules to and from the engine are explicitly taken into account. The work delivered by the engine is calculated analytically for infinitely slow (``pseudo-static'') processes, which can be reversible (quasi-static) or irreversible, controlled by an external agent. It is shown that the work larger than the maximum value limited by the second law of thermodynamics can be obtained in a single cycle of operation by chance, although the statistical average of the work never exceeds this limit and the maximum work is delivered if the process is reversible. The mechanism of the energy transductionis also discussed.Comment: 8 pages, 3 figues, submitted to J. Phys. Soc. Jp

    A cDNA Encoding a 19-Kilodalton Subunit of Protoplast-Release-Inducing Protein from Closterium

    Full text link

    Heat conduction induced by non-Gaussian athermal fluctuations

    Full text link
    We study the properties of heat conduction induced by non-Gaussian noises from athermal environments. We find that new terms should be added to the conventional Fourier law and the fluctuation theorem for the heat current, where its average and fluctuation are determined not only by the noise intensities but also by the non-Gaussian nature of the noises. Our results explicitly show the absence of the zeroth law of thermodynamics in athermal systems.Comment: 15 pages, 4 figures, PRE in pres

    Brownian dynamics around the core of self-gravitating systems

    Full text link
    We derive the non-Maxwellian distribution of self-gravitating NN-body systems around the core by a model based on the random process with the additive and the multiplicative noise. The number density can be obtained through the steady state solution of the Fokker-Planck equation corresponding to the random process. We exhibit that the number density becomes equal to that of the King model around the core by adjusting the friction coefficient and the intensity of the multiplicative noise. We also show that our model can be applied in the system which has a heavier particle. Moreover, we confirm the validity of our model by comparing with our numerical simulation.Comment: 11 pages, 4 figure
    • …
    corecore