71 research outputs found

    Initial Observations of Sunspot Oscillations Excited by Solar Flare

    Full text link
    Observations of a large solar flare of December 13, 2006, using Solar Optical Telescope (SOT) on Hinode spacecraft revealed high-frequency oscillations excited by the flare in the sunspot chromosphere. These oscillations are observed in the region of strong magnetic field of the sunspot umbra, and may provide a new diagnostic tool for probing the structure of sunspots and understanding physical processes in solar flares.Comment: 10 pages, 6 figures, ApJL in pres

    Properties of high-degree oscillation modes of the Sun observed with Hinode/SOT

    Full text link
    Aims. With the Solar Optical Telescope on Hinode, we investigate the basic properties of high-degree solar oscillations observed at two levels in the solar atmosphere, in the G-band (formed in the photosphere) and in the Ca II H line (chromospheric emission). Methods. We analyzed the data by calculating the individual power spectra as well as the cross-spectral properties, i.e., coherence and phase shift. The observational properties are compared with a simple theoretical model, which includes the effects of correlated noise. Results. The results reveal significant frequency shifts between the Ca II H and G-band spectra, in particular above the acoustic cut-off frequency for pseudo-modes. The cross-spectrum phase shows peaks associated with the acoustic oscillation (p-mode) lines, and begins to increase with frequency around the acoustic cut-off. However, we find no phase shift for the (surface gravity wave) f-mode. The observed properties for the p-modes are qualitatively reproduced in a simple model with a correlated background if the correlated noise level in the Ca II H data is higher than in the G-band data. These results suggest that multi-wavelength observations of solar oscillations, in combination with the traditional intensity-velocity observations, may help to determine the level of the correlated background noise and to determine the type of wave excitation sources on the Sun.Comment: 4 pages, 3 figures (6 plots), accepted by A&A Letters for Hinode special issue. v2 includes minor changes suggested by the referee (incl. math. definitions) as well as edited languag

    Two-step Emergence of the Magnetic Flux Sheet from the Solar Convection Zone

    Full text link
    We perform two-dimensional MHD simulations on the solar flux emergence. We set the initial magnetic flux sheet at z=-20,000 km in the convection zone. The flux sheet rises through the convective layer due to the Parker instability, however, decelerates beneath the photosphere because the plasma on the flux sheet piles up owing to the convectively stable photosphere above. Meanwhile, the flux sheet becomes locally unstable to the Parker instability within the photosphere, and the further evolution to the corona occurs (two-step emergence model). We carry out a parameter survey to investigate the condition for this two-step model. We find that magnetic fluxes which form active regions are likely to have undergone the two-step emergence. The condition for the two-step emergence is 10^21 - 10^22 Mx with 10^4 G at z=-20,000 km in the convection zone.Comment: 41 pages, 15 figures, 1 table, Accepted for publication in Ap

    Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars

    Full text link
    The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitudinal differential rotation in the convection zones of 40 Sun-like stars using asteroseismology. For the most significant detections, the stars' equators rotate approximately twice as fast as their mid-latitudes. The latitudinal shear inferred from asteroseismology is much larger than predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc

    Gossamer roadmap technology reference study for a solar polar mission

    Get PDF
    A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100 – 125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2. 5μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass

    Two-Dimensional Helioseismic Power, Phase, and Coherence Spectra of {\it Solar Dynamics Observatory} Photospheric and Chromospheric Observables

    Full text link
    While the {\it Helioseismic and Magnetic Imager} (HMI) onboard the {\it Solar Dynamics Observatory} (SDO) provides Doppler velocity [VV], continuum intensity [ICI_C], and line-depth [LdLd] observations, each of which is sensitive to the five-minute acoustic spectrum, the {\it Atmospheric Imaging Array} (AIA) also observes at wavelengths -- specifically the 1600 and 1700 Angstrom bands -- that are partly formed in the upper photosphere and have good sensitivity to acoustic modes. In this article we consider the characteristics of the spatio--temporal Fourier spectra in AIA and HMI observables for a 15-degree region around NOAA Active Region 11072. We map the spatio--temporal-power distribution for the different observables and the HMI Line Core [ILI_L], or Continuum minus Line Depth, and the phase and coherence functions for selected observable pairs, as a function of position and frequency. Five-minute oscillation power in all observables is suppressed in the sunspot and also in plage areas. Above the acoustic cut-off frequency, the behaviour is more complicated: power in HMI ICI_C is still suppressed in the presence of surface magnetic fields, while power in HMI ILI_L and the AIA bands is suppressed in areas of surface field but enhanced in an extended area around the active region, and power in HMI VV is enhanced in a narrow zone around strong-field concentrations and suppressed in a wider surrounding area. The relative phase of the observables, and their cross-coherence functions, are also altered around the active region. These effects may help us to understand the interaction of waves and magnetic fields in the different layers of the photosphere, and will need to be taken into account in multi-wavelength local helioseismic analysis of active regions.Comment: 18 pages, 15 figures, to be published in Solar Physic

    Time--Distance Helioseismology Data Analysis Pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and Its Initial Results

    Get PDF
    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.Comment: Accepted by Solar Physics topical issue 'Solar Dynamics Observatory

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
    • …
    corecore