3,837 research outputs found

    Three-nucleon interactions: dynamics

    Full text link
    A discussion is presented of the dynamics underlying three-body nuclear forces, with emphasis on changes which occurred over several decades.Comment: Talk given at the FM50 symposium, Tokyo, October 200

    Solitons in Chern-Simons theories of nonrelativistic CP^{N-1} models: Spin textures in the quantum Hall effect

    Full text link
    Topological solitons in CP^{N-1} models coupled with Chern-Simons gauge theory and a Hopf term are studied both analytically and numerically.These models are low-energy effective theories for the quantum Hall effect with internal degrees of freedom, like that in bilayer electron systems. We explicitly show that the CP^{N-1} models describe quite well spin textures in the original Chern-Simons theory of bosonized electrons.Comment: Latex, 19 pages, 6 figure

    Three-nucleon interactions: A frontier in nuclear structure

    Full text link
    Three-nucleon interactions are a frontier in understanding and predicting the structure of strongly-interacting matter in laboratory nuclei and in the cosmos. We present results and discuss the status of first calculations with microscopic three-nucleon interactions beyond light nuclei. This coherent effort is possible due to advances based on effective field theory and renormalization group methods in nuclear physics.Comment: 7 pages, 11 figures, talk at International Symposium on New Facet of Three-Nucleon Force (FM50), Tokyo, October, 200

    Constraining Light Gravitino Mass from Cosmic Microwave Background

    Full text link
    We investigate the possibilities of constraining the light gravitino mass m_{3/2} from future cosmic microwave background (CMB) surveys. A model with light gravitino with the mass m_{3/2}<O(10) eV is of great interest since it is free from the cosmological gravitino problem and, in addition, can be compatible with many baryogenesis/leptogenesis scenarios such as the thermal leptogenesis. We show that the lensing of CMB anisotropies can be a good probe for m_{3/2} and obtain an expected constraint on m_{3/2} from precise measurements of lensing potential in the future CMB surveys, such as the PolarBeaR and CMBpol experiments. If the gravitino mass is m_{3/2}=1 eV, we will obtain the constraint for the gravitino mass as m_{3/2} < 3.2 eV (95% C.L.) for the case with Planck+PolarBeaR combined and m_{3/2}=1.04^{+0.22}_{-0.26} eV (68% C.L.) for CMBpol. The issue of Bayesian model selection is also discussed.Comment: 22 pages, 6 figures, 7 tables, references are added, accepted for publication in JCA

    New insights into black bodies

    Full text link
    Planck's law describes the radiation of black bodies. The study of its properties is of special interest, as black bodies are a good description for the behavior of many phenomena. In this work a new mathematical study of Planck's law is performed and new properties of this old acquaintance are obtained. As a result, the exact form for the locus in a color-color diagrams has been deduced, and an analytical formula to determine with precision the black body temperature of an object from any pair of measurements has been developed. Thus, using two images of the same field obtained with different filters, one can compute a fast estimation of black body temperatures for every pixel in the image, that is, a new image of the black body temperatures for all the objects in the field. Once these temperatures are obtained, the method allows, as a consequence, a quick estimation of their emission in other frequencies, assuming a black body behavior. These results provide new tools for data analysis.Comment: 6 pages, 5 figures. Accepted in EP

    Isocurvature fluctuations in Affleck-Dine mechanism and constraints on inflation models

    Full text link
    We reconsider the Affleck-Dine mechanism for baryogenesis and show that the baryonic isocurvature fluctuations are generated in many inflation models in supergravity. The inflationary scale and the reheating temperature must satisfy certain constraints to avoid too large baryonic isocurvature fluctuations.Comment: 18 pages, 1 figur

    Subaru Deep Survey VI. A Census of Lyman Break Galaxies at z=4 and 5 in the Subaru Deep Fields: Clustering Properties

    Full text link
    We investigate the clustering properties of 2,600 Lyman Break Galaxies (LBGs) at z=3.5-5.2 in two large blank fields, the Subaru Deep Field and the Subaru/XMM Deep Field (600arcmin^2 each). The angular correlation functions of these LBGs show a clear clustering at both z~4 and 5. The correlation lengths are r_0= 4.1^{+0.2}_{-0.2} and 5.9^{+1.3}_{-1.7} h_{100}^{-1} Mpc (r_0= 5.1^{+1.0}_{-1.1} and 5.9^{+1.3}_{-1.7} h_{100}^{-1} Mpc) for all the detected LBGs (for L>L* LBGs) at z~4 and 5, respectively. These correlation lengths correspond to galaxy-dark matter biases of b_g= 2.9^{+0.1}_{-0.1} and 4.6^{+0.9}_{-1.2} (b_g=3.5^{+0.6}_{-0.7} and 4.6^{+0.9}_{-1.2}), for all the detected LBGs (for L>L^* LBGs) at z~4 and 5, respectively. These results, combined with estimates for z~3 LBGs in the literature, show that the correlation length of L>L^* LBGs is almost constant, ~5 h_{100}^{-1} Mpc, over z~3-5, while the bias monotonically increases with redshift at z>3. We also find that for LBGs at z~4 the clustering amplitude increases with UV-continuum luminosity and with the amount of dust extinction. We estimate the mass of dark halos hosting various kinds of high-z galaxies including LBGs with the analytic model given by Sheth & Tormen (1999). We find that the typical mass of dark halos hosting L>L^* LBGs is about 1x10^{12} h_{70}^{-1}Msol over z~3-5, which is comparable to that of the Milky Way Galaxy. A single dark halo with ~10^{12} h_{70}^{-1} Msol is found to host 0.1-0.3 LBG on average but host about four K-band selected galaxies.Comment: 33 pages, 12 figures, ApJ in press. Paper with high resolution figures is available at http://hikari.astron.s.u-tokyo.ac.jp/~ouchi/work/astroph/SDS_V_VI/SDS_VI.pdf (PDF) (The abstract was reduced by the revision.

    Non-linear isocurvature perturbations and non-Gaussianities

    Get PDF
    We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended delta N-formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.Comment: 24 pages, typos corrected, references adde
    • …
    corecore