82 research outputs found

    Evolution of a pairing-induced pseudogap from the superconducting gap of (Bi,Pb)2Sr2CuO6

    Full text link
    We have performed an ultrahigh-resolution angle-resolved photoemission spectroscopy study of slightly-overdoped (Bi,Pb)2Sr2CuO6 to elucidate the origin of pseudogap. By using a newly developed xenon-plasma light source, we determined the comprehensive momentum and temperature dependences of the superconducting gap and the pseudogap. We found that the antinodal pseudogap persists far above the superconducting transition temperature and is smoothly connected to the nodal gap. The characteristic temperature of the pseudogap scales well with the superconducting-gap size irrespective of the momentum location. The present experimental results point to the pairing origin of the pseudogap.Comment: 4 pages, 3 figures, to appear in PR

    Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsO1−x_{1-x}Fx_x

    Full text link
    The effect of non-magnetic Zn impurity on superconductivity in LaFe1−y_{1-y}Zny_yAsO1−x_{1-x}Fx_x system is studied systematically. In the presence of Zn impurity, the superconducting transition temperature increases in the under-doped regime, remains unchanged in the optimally doped regime, and is severely suppressed in the over-doped regime. Our results suggest a switch of the symmetry of the superconducting order parameters from a ss-wave to s±s_{\pm} or dd-wave states as the charge carrier doping increases in FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad

    Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2

    Full text link
    The recent discovery of superconductivity in iron-arsenic compounds below a transition temperature (Tc) as high as 55K ended the monopoly of copper oxides (cuprates) in the family of high-Tc superconductors. A critical issue in understanding this new superconductor, as in the case of cuprates, is the nature, in particular the symmetry and orbital dependence, of the superconducting gap. There are conflicting experimental results, mostly from indirect measurements of the low energy excitation gap, ranging from one gap to two gaps, from line nodes to nodeless gap function in momentum space. Here we report a direct observation of the superconducting gap, including its momentum, temperature, and Fermi surface (FS) dependence in Ba0.6K0.4Fe2As2 (Tc = 37 K) using angle-resolved photoelectron spectroscopy. We find two superconducting gaps with different values: a large gap (~ 12 meV) on the two small hole-like and electron-like FS sheets, and a small gap (~ 6 meV) on the large hole-like FS. Both gaps, closing simultaneously at the bulk Tc, are nodeless and nearly isotropic around their respective FS sheets. The isotropic pairing interactions are strongly orbital dependent, as the ratio 2Delta/kBTc switches from weak to strong coupling on different bands. The same and surprisingly large superconducting gap due to strong pairing on the two small FS, which are connected by the (pi, 0) spin-density-wave vector in the parent compound, strongly suggests that the pairing mechanism originates from the inter-band interactions between these two nested FS sheets.Comment: 4 figure

    Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets including a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable (Δ\Delta ∼\sim 11 meV) to that of the inner electron and hole pockets (∼\sim12 meV), although it is substantially larger than that of the outer hole pocket (∼\sim6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with Δ\Delta(kk) = Δ\Delta0_0coskxk_xcoskyk_y formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.Comment: 4 pages, 3 figures, 1 tabl

    Doping-Dependent and Orbital-Dependent Band Renormalization in Ba(Fe_1-xCo_x)_2As_2 Superconductors

    Full text link
    Angle resolved photoemission spectroscopy of Ba(Fe1-xCox)2As2 (x = 0.06, 0.14, and 0.24) shows that the width of the Fe 3d yz/zx hole band depends on the doping level. In contrast, the Fe 3d x^2-y^2 and 3z^2-r^2 bands are rigid and shifted by the Co doping. The Fe 3d yz/zx hole band is flattened at the optimal doping level x = 0.06, indicating that the band renormalization of the Fe 3d yz/zx band correlates with the enhancement of the superconducting transition temperature. The orbital-dependent and doping-dependent band renormalization indicates that the fluctuations responsible for the superconductivity is deeply related to the Fe 3d orbital degeneracy.Comment: 5 pages, 4 figure

    Electronic structure of heavily electron-doped BaFe1.7_{1.7}Co0.3_{0.3}As2_2 studied by angle-resolved photoemission

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on heavily electron-doped non-superconducting (SC) BaFe1.7_{1.7}Co0.3_{0.3}As2_2. We find that the two hole Fermi surface pockets at the zone center observed in the hole-doped superconducting Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 are absent or very small in this compound, while the two electron pockets at the M point significantly expand due to electron doping by the Co substitution. Comparison of the Fermi surface between non-SC and SC samples indicates that the coexistence of hole and electron pockets connected via the antiferromagnetic wave vector is essential in realizing the mechanism of superconductivity in the iron-based superconductors.Comment: 5 pages, 4 figure

    Effect of 3d-doping on the electronic structure of BaFe2As2

    Get PDF
    The electronic structure of BaFe2As2 doped with Co, Ni, and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni, and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.Comment: 18 pages, 8 figure

    Doping evolution of superconducting gaps and electronic densities of states in Ba(Fe1-xCox)2As2 iron pnictides

    Full text link
    An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x 0.06), which illustrates the strong competition between magnetism and superconductivity to monopolize the Fermi surface in the underdoped region and the filling of the hole bands for overdoped Ba(Fe1-xCox)2As2. All superconducting samples exhibit a residual electronic density of states of unknown origin in the zero-temperature limit, which is minimal at optimal doping but increases to the normal-state value in the strongly under- and over-doped regions. The remaining specific heat in the superconducting state is well described using a two-band model with isotropic s-wave superconducting gaps.Comment: Submitted to Europhysics Letter
    • …
    corecore