1,349 research outputs found
Phase Retrieval From Binary Measurements
We consider the problem of signal reconstruction from quadratic measurements
that are encoded as +1 or -1 depending on whether they exceed a predetermined
positive threshold or not. Binary measurements are fast to acquire and
inexpensive in terms of hardware. We formulate the problem of signal
reconstruction using a consistency criterion, wherein one seeks to find a
signal that is in agreement with the measurements. To enforce consistency, we
construct a convex cost using a one-sided quadratic penalty and minimize it
using an iterative accelerated projected gradient-descent (APGD) technique. The
PGD scheme reduces the cost function in each iteration, whereas incorporating
momentum into PGD, notwithstanding the lack of such a descent property,
exhibits faster convergence than PGD empirically. We refer to the resulting
algorithm as binary phase retrieval (BPR). Considering additive white noise
contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB)
for the binary encoding model. Experimental results demonstrate that the BPR
algorithm yields a signal-to- reconstruction error ratio (SRER) of
approximately 25 dB in the absence of noise. In the presence of noise prior to
quantization, the SRER is within 2 to 3 dB of the CRB
- …