52 research outputs found

    Absence of Detectable Influenza RNA Transmitted via Aerosol during Various Human Respiratory Activities – Experiments from Singapore and Hong Kong

    Get PDF
    Two independent studies by two separate research teams (from Hong Kong and Singapore) failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin’s mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR) assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing), talk (counting in English/second language), cough (from 1 m/0.1 m away) and laugh, onto a thermal, breathing manikin. The manikin’s face was swabbed at specific points (around both eyes, the nostrils and the mouth) before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team’s in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B) infection with high viral loads, ranging from 105-108 copies/mL (Hong Kong volunteers/assay) and 104–107 copies/mL influenza viral RNA (Singapore volunteers/assay). These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within these exposure time-frames. Various reasons are discussed in an attempt to explain these findings.published_or_final_versio

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Identification of groundwater drought prone zones in Pedda vagu and Ookachetti vagu watersheds, tributaries of the Krishna River, India

    Full text link
    The Pedda vagu and Ookachetti vagu watersheds located in the semi-arid regions of Mahabubnagar district are highly dependent on groundwater for irrigation owing to unreliable rainfall and over extraction of groundwater. The present study has been conducted to identify spatio-temporal groundwater droughts and drought-prone zones. Temporal groundwater droughts have been determined using a standardized water-level index along with spatial groundwater droughts using spline interpolation in Geographic Information Systems. The study shows that the groundwater droughts varied among the stations during the observation period, i.e. 1998-2011. However, the spatial assessment shows that the region as such experienced more mild groundwater droughts except during severe meteorological drought years (1998, 2002, 2004 and 2008); this indicates that the region has good scope for groundwater exploitation during dry spells and initial stages of droughts. Therefore, it is critical to have plans for the development of groundwater to cope with drought

    Numerical Simulation of Groundwater Flow with Gradually Increasing Heterogeneity due to Clogging

    Full text link
    Well injection replenishes depleting water levels in a well field. Observation well water levels some distance away from the injection well are the indicators of the success of a well injection program. Simulation of the observation well response, located a few tens of meters from the injection well, is likely to be affected by the effects of nonhomogeneous medium, inclined initial water table, and aquifer clogging. Existing algorithms, such as the U.S. Geological Survey groundwater flow software MODFLOW, are capable of handling the first two conditions, whereas time-dependent clogging effects are yet to be introduced in the groundwater flow models. Elsewhere, aquifer clogging is extensively researched in theory of filtration; scope for its application in a well field is a potential research problem. In the present paper, coupling of one such filtration theory to MODFLOW is introduced. Simulation of clogging effects during “Hansol” well recharge in the parts of western India is found to be encouraging

    Coupled Solution for Forced Recharge in Confined Aquifers

    Full text link
    Analytical solutions for forced well recharge currently in use were initially developed for pumping scenarios and applied for recharge cases assuming that radial flow in the recharge well replicates a mirror image of that in to a pumping well. Moreover these solutions were not extended to multiaquifer systems. Well bore numerical solutions were generally not considering the effect of well bore interaction, which has a significant effect in the case of a recharge well. In the present paper, improved analytical solutions are developed for a well fully penetrating either single or multiaquifers in respect.to of well storage, well loss, and interactions between the individual aquifers through well bore. The solution developed for constant and variable rates of injection and well loss is applied to the experimental data of the Hansol well injection project near the city of Ahmedabad in the Gujarat state in India. The paper also discusses the difference in well hydraulics of recharge and recovery wells
    corecore