2 research outputs found
i‑Motif-Driven Au Nanomachines in Programmed siRNA Delivery for Gene-Silencing and Photothermal Ablation
The present work illustrates unique design, construction and operation of an i-motif-based DNA nanomachine templated on gold nanoparticles (AuNPs), which utilizes pH-responsive dynamic motion of i-motif DNA strands and aggregational behavior of AuNPs to elicit programmed delivery of therapeutic siRNA. The pH-sensitive nucleic acids immobilized on the AuNPs consisted of three functional segments, <i>i.e.</i>, an i-motif DNA, an overhanging linker DNA and a therapeutic siRNA. At neutral pH, the i-motif DNA is hybridized with the overhanging linker DNA segment of the therapeutic siRNA. However, in endosomal acidic pH, the i-motif DNA forms interstrand tetraplex, which could induce cluster formation of AuNPs resulting in endosomal escape of AuNP clusters, and produce a high gene silencing efficiency by releasing siRNA in the cytosol. Furthermore, the cluster formation of AuNPs accelerated photothermal ablation of cells when irradiated with laser. Precise and synchronized biomechanical motion in subcellular microenvironment is realized through judicious integration of pH-responsive behavior of the i-motif DNA and AuNPs, and meticulous designing of DNA
Tumor-Targeting Transferrin Nanoparticles for Systemic Polymerized siRNA Delivery in Tumor-Bearing Mice
Transferrin (TF) is widely used as
a tumor-targeting ligand for
the delivery of anticancer drugs because the TF receptor is overexpressed
on the surface of various fast-growing cancer cells. In this article,
we report on TF nanoparticles as an siRNA delivery carrier for in
vivo tumor-specific gene silencing. To produce siRNA carrying TF nanoparticles
(NPs), both TF and siRNA were chemically modified with sulfhydryl
groups that can build up self-cross-linked siRNA-TF NPs. Self-polymerized
5′-end thiol-modified siRNA (poly siRNA, psi) and thiolated
transferrin (tTF) were spontaneously cross-linked to form stable NPs
(psi-tTF NPs) under optimized conditions, and they could be reversibly
degraded to release functional monomeric siRNA molecules under reductive
conditions. Receptor-mediated endocytosis of TF induced rapid tumor-cell-specific
uptake of the psi-tTF NPs, and the internalized NPs resulted in a
downregulation of the target protein in red-fluorescent-protein-expressing
melanoma cancer cells (RFP/B16F10) with negligible cytotoxicity. After
systemic administration, the psi-tTF NPs showed marked accumulation
at the tumor, leading to successful target-gene silencing in vivo.
This psi-tTF NP system provided a safe and effective strategy for
in vivo systemic siRNA delivery for cancer therapy