10 research outputs found

    Situating the EU human rights system in an international human rights context

    No full text
    Defence date: 16 July 2003Supervisor: Gráinne de BúrcaPDF of thesis uploaded from the Library digitised archive of EUI PhD theses completed between 2013 and 201

    Discovery of Major Quantitative Trait Loci and Candidate Genes for Fresh Seed Dormancy in Groundnut

    No full text
    Spanish bunch groundnut varieties occupy most of the cultivated area in Asia and Africa, and these varieties lack required 2-3 weeks of fresh seed dormancy (FSD) hampering kernel quality. Genomic breeding can help to improve commercial groundnut cultivars for FSD in a shorter time with greater precision. In this regard, a recombinant inbred line (RIL) population from the cross ICGV 02266 (non-dormant) × ICGV 97045 (dormant) was developed and genotyped with a 5 K mid-density genotyping assay. A linkage map was constructed with 325 SNP loci spanning a total map length of 2335.3 cM and five major QTLs were identified on chromosomes Ah01, Ah11, Ah06, Ah16 and Ah17. Based on differential gene expression using transcriptomic information from dormant (Tifrunner) and non-dormant (ICGV 91114) genotypes, histone deacetylases, histone-lysine N-methyltransferase, cytochrome P450, protein kinases, and ethylene-responsive transcription factor were identified as key regulators involved in the hormonal regulation of dormancy. Six Kompetitive Allele Specific PCR (KASP) markers were successfully validated in the diverse panel including selected RILs of the same population and germplasm lines. These validated KASP markers could facilitate faster breeding of new varieties with desired dormancy using marker-assisted early generation selection

    Not Available

    No full text
    Not AvailableAflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.Not Availabl
    corecore