3 research outputs found

    Benefits of fully focused SAR altimetry to coastal wave height estimates: A case study in the North Sea

    No full text
    Estimating the three geophysical variables significant wave height (SWH), sea surface height, and wind speed from satellite altimetry continues to be challenging in the coastal zone because the received radar echoes exhibit significant interference from strongly reflective targets such as sandbanks, sheltered bays, ships etc. Fully focused SAR (FF-SAR) processing exhibits a theoretical along-track resolution of up to less than half a metre. This suggests that the application of FF-SAR altimetry might give potential gains over unfocused SAR (UF-SAR) altimetry to resolve and mitigate small-scale interferers in the along-track direction to improve the accuracy and precision of the geophysical estimates. The objective of this study is to assess the applicability of FF-SAR-processed Sentinel-6 Michael Freilich (S6-MF) coastal altimetry data to obtain SWH estimates as close as possible to the coast. We have developed a multi-mission FF-SAR processor and applied the coastal retracking algorithm CORALv2 to estimate SWH. We assess different FF-SAR and UF-SAR processing configurations, as well as the baseline Level-2 product from EUMETSAT, by comparison with the coastal, high-resolution SWAN-Kuststrook wave model from the Deltares RWsOS North Sea operational forecasting system. This includes the evaluation of the correlation, the median offset, and the percentage of cycles with high correlation as a function of distance to the nearest coastline. Moreover, we analyse the number of valid records and the L2 noise of the records. The case study comprises five coastal crossings of S6-MF that are located along the Dutch coast and the German coast along the East Frisian Islands in the North Sea. We observe that accurate and precise SWH records can be estimated in the nearshore zone within 1–3 km from the coast using satellite SAR altimetry. We find that the FF-SAR-processed dataset with a Level-1b posting rate of 140 Hz shows the greatest similarity with the wave model. We achieve a correlation of ∼0.8 at 80% of valid records and a gain in precision of up to 29% of FF-SAR vs UF-SAR for 1–3 km from the coast. FF-SAR shows, for all cycles, a high correlation of greater than or equal to 0.8 for 1–3 km from the coast. We estimate the decay of SWH from offshore at 30 km to up to 1 km from the coast to amount to 26.4% ± 3.1%.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Physical and Space GeodesyMathematical Geodesy and Positionin

    Altimetry-derived tide model for improved tide and water level forecasting along the European continental shelf

    No full text
    With the continued rise in global mean sea level, operational predictions of tidal height and total water levels have become crucial for accurate estimations and understanding of sea level processes. The Dutch Continental Shelf Model in Delft3D Flexible Mesh (DCSM-FM) is developed at Deltares to operationally estimate the total water levels to help trigger early warning systems to mitigate against these extreme events. In this study, a regional version of the Empirical Ocean Tide model for the Northwest European Continental Sea (EOT-NECS) is developed with the aim to apply better tidal forcing along the boundary of the regional DCSM-FM. EOT-NECS is developed at DGFI-TUM by using 30 years of multi-mission along-track satellite altimetry to derive tidal constituents which are estimated both empirically and semi-empirically. Compared to the global model, EOT20, EOT-NECS showed a reduction in the root-square-sum error for the eight major tidal constituents of 0.68 cm compared to in situ tide gauges. When applying constituents from EOT-NECS at the boundaries of DCSM-FM, an overall improvement of 0.29 cm was seen in the root-mean-square error of tidal height estimations made by DCSM-FM, with some regions exceeding a 1 cm improvement. Furthermore, of the fourteen constituents tested, eleven showed a reduction of RMS when included at the boundary of DCSM-FM from EOT-NECS. The results demonstrate the importance of using the appropriate tide model(s) as boundary forcings, and in this study, the use of EOT-NECS has a positive impact on the total water level estimations made in the northwest European continental seas.Mathematical Physic

    Proof of concept study for fuselage boundary layer ingesting propulsion

    No full text
    Key results from the EU H2020 project CENTRELINE are presented. The research activities undertaken to demonstrate the proof of concept (technology readiness level-TRL 3) for the so-called propulsive fuselage concept (PFC) for fuselage wake-filling propulsion integration are discussed. The technology application case in the wide-body market segment is motivated. The developed performance bookkeeping scheme for fuselage boundary layer ingestion (BLI) propulsion integration is reviewed. The results of the 2D aerodynamic shape optimization for the bare PFC configuration are presented. Key findings from the high-fidelity aero-numerical simulation and aerodynamic validation testing, i.e., the overall aircraft wind tunnel and the BLI fan rig test campaigns, are discussed. The design results for the architectural concept, systems integration and electric machinery pre-design for the fuselage fan turbo-electric power train are summarized. The design and performance implications on the main power plants are analyzed. Conceptual design solutions for the mechanical and aerostructural integration of the BLI propulsive device are introduced. Key heuristics deduced for PFC conceptual aircraft design are presented. Assessments of fuel burn, NOx emissions, and noise are presented for the PFC aircraft and benchmarked against advanced conventional technology for an entry-into-service in 2035. The PFC design mission fuel benefit based on 2D optimized PFC aero-shaping is 4.7%.Flight Performance and Propulsio
    corecore