5 research outputs found
Anterior Cruciate Ligament Reconstruction Using a Bone–Patellar Tendon–Bone Autograft to Avoid Harvest-Site Morbidity in Knee Arthroscopy
Although anterior cruciate ligament reconstruction using a bone–patellar tendon–bone (BPTB) autograft has many advantages (e.g., high strength and solid fixation), there are also several complications (e.g., anterior knee pain or kneeling pain) due to harvest-site morbidity associated with the use of this graft type compared with the use of hamstring tendon. Therefore the ultimate goal of anterior cruciate ligament reconstruction using a BPTB graft is to minimize harvest-site morbidity. We have used a technique for harvesting central-third BPTB grafts that involves only a 3-cm-long, longitudinal, curved incision in the medial tibial tuberosity for both graft harvesting and fixation. The purpose of this report is to describe the technique, which can avoid the harvest-site morbidities associated with BPTB autografts during knee arthroscopy. We believe that this less invasive reconstruction may reduce the harvest-site morbidities associated with BPTB grafts because it allows for BPTB graft harvesting without incising the synovial bursa or paratenon and mitigates scarring and adhesion formation
BLyS and APRIL in rheumatoid arthritis
The cytokines B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) enhance autoimmune disease by sustaining B cell activation. In RA, B cells contribute to the formation of 3 functionally distinct types of lymphoid microarchitectures in the inflamed synovium: ectopic GCs; T cell–B cell aggregates lacking GC reactions; and unorganized, diffuse infiltrates. We examined 72 tissues representing the 3 types of synovitis for BLyS and APRIL production and for expression of APRIL/BLyS receptors. Biologic effects of BLyS and APRIL were explored by treating human synovium–SCID mouse chimeras with the APRIL and BLyS decoy receptor transmembrane activator and CAML interactor:Fc (TACI:Fc). GC(+) synovitis had the highest levels of APRIL, produced exclusively by CD83(+) DCs. BLyS was present in similar levels in all tissue types and derived exclusively from CD68(+) macrophages. In GC(+) synovitis, treatment with TACI:Fc resulted in GC destruction and marked inhibition of IFN-γ and Ig transcription. In contrast, inhibition of APRIL and BLyS in aggregate and diffuse synovitis left Ig levels unaffected and enhanced IFN-γ production. These differential immunomodulatory effects correlated with the presence of TACI(+) T cells in aggregate and diffuse synovitis and their absence in GC(+) synovitis. We propose that BLyS and APRIL regulate B cell as well as T cell function and have pro- and antiinflammatory activities in RA