3 research outputs found

    Marine mammal distribution and abundance in an offshore sub-region of the northeastern Chukchi Sea during the open-water season

    Get PDF
    AbstractThis paper describes the distribution and abundance of marine mammals during the open-water season within and near three offshore oil and gas prospects in the northeastern Chukchi Sea, known as the Klondike, Burger, and Statoil study areas. We collected vessel-based marine mammal data during July–October 2008–2010 along line transects oriented in a north–south direction. Over this period, we surveyed ~18,600km of on-transect effort in the three study areas. Sightings of cetaceans were rare. The bowhead whale was the primary cetacean species sighted and was mostly observed in October (33 of 35 animals). Pinnipeds were the most abundant marine mammals in the study area, with 980 seals and 367 walruses recorded on transect. Most seals were observed as solitary animals, while walruses were often observed in aggregations. We calculated seal and walrus densities using species-specific detection functions corrected for probability of detection. There was high interannual variability in the abundance of seals and walruses that for some species may be related to interannual differences in ice conditions. Notwithstanding this variation, the distribution data suggest that benthic-feeding bearded seals and walruses generally were more common in the Burger and Statoil study areas, which can be characterized as more benthic-dominated ecosystems. The distribution of ringed/spotted seals did not show any statistically significant differences among the study areas, although a slight preference for the Klondike and Statoil study areas was suggested. Both of these study areas are affected by Bering Sea Water from the Central Channel and have a stronger pelagic component than the Burger study area. Continued sampling of these areas will help establish whether the observed trends in marine mammal distribution and abundance are persistent

    Ltv1 Is Required for Efficient Nuclear Export of the Ribosomal Small Subunit in Saccharomyces cerevisiae

    No full text
    In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Δltv1 mutants, as judged by the altered distribution of the 5′-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit
    corecore