2 research outputs found

    Mechanistic Study on the Degradation of Hydrolysable Core-Crosslinked Polymeric Micelles

    Get PDF
    Core-crosslinked polymeric micelles (CCPMs) are an attractive class of nanocarriers for drug delivery. Two crosslinking approaches to form CCPMs exist: either via a low-molecular-weight crosslinking agent to connect homogeneous polymer chains with reactive handles or via cross-reactive handles on polymers to link them to each other (complementary polymers). Previously, CCPMs based on methoxy poly(ethylene glycol)- b-poly[ N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG- b-PHPMAmLac n ) modified with thioesters were crosslinked via native chemical ligation (NCL, a reaction between a cysteine residue and thioester resulting in an amide bond) using a bifunctional cysteine containing crosslinker. These CCPMs are degradable under physiological conditions due to hydrolysis of the ester groups present in the crosslinks. The rapid onset of degradation observed previously, as measured by the light scattering intensity, questions the effectiveness of crosslinking via a bifunctional agent. Particularly due to the possibility of intrachain crosslinks that can occur using such a small crosslinker, we investigated the degradation mechanism of CCPMs generated via both approaches using various analytical techniques. CCPMs based on complementary polymers degraded slower at pH 7.4 and 37 °C than CCPMs with a crosslinker (the half-life of the light scattering intensity was approximately 170 h versus 80 h, respectively). Through comparative analysis of the degradation profiles of the two different CCPMs, we conclude that partially ineffective intrachain crosslinks are likely formed using the small crosslinker, which contributed to more rapid CCPM degradation. Overall, this study shows that the type of crosslinking approach can significantly affect degradation kinetics, and this should be taken into consideration when developing new degradable CCPM platforms

    A robust post-insertion method for the preparation of targeted siRNA LNPs

    No full text
    Targeted delivery of nucleic acids is gaining momentum due to improved efficacy, selectivity, increased circulation time and enhanced tissue retention in target cells. Using nucleic acid-based therapies previously undruggable targets have proven now to be amenable for treatment. Currently, several methods for preparing targeted or labelled delivery vehicles for nucleic acids are based on liposomal formulations. Lipid nanoparticles (LNPs) are structurally different from liposomes and these methods should therefore be evaluated before being translated to siRNA LNPs preparation protocols. Here, we describe a robust and facile method for the preparation of targeted or fluorescently labelled siRNA LNPs. Using a copper free strain-promoted azide-alkyne cycloaddition (SPAAC) we demonstrate that post-insertion of ligand-lipid conjugates into preformed LNPs is superior to direct-surface modification because it preserves the physicochemical parameters of the LNPs. We found that the time point of solvent removal by dialysis is critical and affects the hydrodynamic diameter of the LNPs; post-insertion after dialysis shows the smallest increase in hydrodynamic diameter and polydispersity index (PDI). The post-insertion of ligand-lipid conjugates also proceeded with rapid kinetics and high efficacy over a wide temperature range. Using this optimised protocol, we generated siRNA LNPs containing both targeting and fluorescent tracking ligands allowing us to monitor siRNA LNP uptake kinetics in dependence of the targeting ligand. In aggregate, we describe a robust approach for the generation of targeted and labelled siRNA LNPs that allows their controlled and facile decoration with ligand combinations
    corecore