147 research outputs found
A multi-shot target-wheel assembly for high-repetition-rate, laser-driven proton acceleration
A multi-shot target assembly and automatic alignment procedure for
laser-plasma proton acceleration at high-repetition-rate are introduced. The
assembly is based on a multi-target rotating wheel capable of hosting 5000
targets, mounted on a three-dimensional motorised stage to allow rapid
replenishment and alignment of the target material between laser irradiations.
The automatic alignment procedure consists of a detailed mapping of the impact
positions at the target surface prior to the irradiation that ensures stable
operation of the target, which alongside the purpose-built design of the target
wheel, enable the operation at rates up to 10 Hz. Stable and continuous
laser-driven proton acceleration is demonstrated, with observed cut-off energy
stability about 15%.Comment: 8 pages, 5 figure
Measurements of the \gamma * p --> \Delta(1232) reaction at low Q2
We report new p measurements in the
resonance at the low momentum transfer region utilizing the
magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud
dynamics are predicted to be dominant and appreciably changing in this region
while the momentum transfer is sufficiently low to be able to test chiral
effective calculations. The results disagree with predictions of constituent
quark models and are in reasonable agreement with dynamical calculations with
pion cloud effects, chiral effective field theory and lattice calculations. The
reported measurements suggest that improvement is required to the theoretical
calculations and provide valuable input that will allow their refinements
Lowest Q^2 Measurement of the gamma*p -> Delta Reaction: Probing the Pionic Contribution
To determine nonspherical angular momentum amplitudes in hadrons at long
ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the
Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the
A1 Collaboration at MAMI. The results for the dominant transition magnetic
dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are:
M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model})
(10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst}
+/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/-
0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of
constituent quark models but are in reasonable agreement with lattice
calculations with non-linear (chiral) pion mass extrapolations, with chiral
effective field theory, and with dynamical models with pion cloud effects.
These results confirm the dominance, and general Q^2 variation, of the pionic
contribution at large distances.Comment: 6 pages, 3 figures, 1 tabl
First measurements of the ^16O(e,e'pn)^14N reaction
This paper reports on the first measurement of the ^16O(e,e'pn)^14N reaction.
Data were measured in kinematics centred on a super-parallel geometry at energy
and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution
was sufficient to distinguish groups of states in the residual nucleus but not
good enough to separate individual states. The data show a strong dependence on
missing momentum and this dependence appears to be different for two groups of
states in the residual nucleus. Theoretical calculations of the reaction using
the Pavia code do not reproduce the shape or the magnitude of the data.Comment: 10 pages, 11 figures, 2 tables, Accepted for publication in EPJ
Measurement of the Beam-Recoil Polarization in Low-Energy Virtual Compton Scattering from the Proton
Double-polarization observables in the reaction have been measured at . The experiment
was performed at the spectrometer setup of the A1 Collaboration using the 855
MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil
proton polarimeter. From the double-polarization observables the structure
function is extracted for the first time, with the value , using the low-energy theorem
for Virtual Compton Sattering. This structure function provides a hitherto
unmeasured linear combination of the generalized polarizabilities of the
proton
Final State Interaction Effects in pol 3He(pol e,e'p)
Asymmetries in quasi-elastic pol 3He(pol e,e'p) have been measured at a
momentum transfer of 0.67 (GeV/c)^2 and are compared to a calculation which
takes into account relativistic kinematics in the final state and a
relativistic one-body current operator. With an exact solution of the Faddeev
equation for the 3He-ground state and an approximate treatment of final state
interactions in the continuum good agreement is found with the experimental
data.Comment: 11 pages, 6 figures, submitted to Phys. Lett. B, revised version,
sensitivity study to relativity and NN-potential adde
Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector
CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
Self energies of the pion and the delta isobar from the ^3He(e,e'pi^+)^3H reaction
In a kinematically complete experiment at the Mainz microtron MAMI, pion
angular distributions of the He(e,e'H reaction have been measured
in the excitation region of the resonance to determine the
longitudinal (), transverse (), and the interference part of the
differential cross section. The data are described only after introducing
self-energy modifications of the pion and -isobar propagators. Using
Chiral Perturbation Theory (ChPT) to extrapolate the pion self energy as
inferred from the measurement on the mass shell, we deduce a reduction of the
mass of MeV/c in the
neutron-rich nuclear medium at a density of fm. Our data are consistent with the self energy
determined from measurements of photoproduction from He and heavier
nuclei.Comment: Elsart, 12 pages and 4 figures, Correspondent: Professor Dr. Dr. h.c.
mult. Achim Richter, [email protected], submitted to Phys. Rev.
Let
- …